DOI QR코드

DOI QR Code

Determination of Wood Flour Content in WPC Through Thermogravimetic Analysis and Accelerator Mass Spectrometry

열중량 분석기와 질량가속기를 이용한 목재·플라스틱 복합재의 목질섬유함량 분석

  • Gwon, Jae-Gyoung (Department of Forest Products, National Institute of Forest Science) ;
  • Lee, Dan-Bee (Department of Forest Products, National Institute of Forest Science) ;
  • Cho, Hye-Jung (Department of Forest Products, National Institute of Forest Science) ;
  • Chun, Sang-Jin (Department of Forest Products, National Institute of Forest Science) ;
  • Choi, Don-Ha (Department of Forest Products, National Institute of Forest Science) ;
  • Lee, Sun-Young (Department of Forest Products, National Institute of Forest Science)
  • 권재경 (국립산림과학원 임산공학부) ;
  • 이단비 (국립산림과학원 임산공학부) ;
  • 조혜정 (국립산림과학원 임산공학부) ;
  • 전상진 (국립산림과학원 임산공학부) ;
  • 최돈하 (국립산림과학원 임산공학부) ;
  • 이선영 (국립산림과학원 임산공학부)
  • Received : 2017.07.28
  • Accepted : 2017.08.20
  • Published : 2017.09.25

Abstract

Determination of the wood content in wood plastic composite (WPC) is crucial to form reliable WPC market. WPC with simple formulation consisting of only two components (wood flour and polypropylene) was examined using thermogravimetric analysis (TGA) and accelerator mass spectrometry (AMS) for determining wood content in the WPC. TGA method using derivative peak temperature (DTp) of polypropylene under low heating rate ($5^{\circ}C/min$) showed more reliable calibration curve and lower error factor compared to method of using the percentage of weight loss of wood flour. In addition, AMS using bio-based carbon content showed greater reliability for the determination of wood content in the WPC in comparison with the TGA method.

WPC 내 목질섬유 함량 분석은 신뢰도 높은 목재 플라스틱 복합재(WPC) 소비시장 형성을 위해 상당히 중요하다. 본 연구에서는 polypropylene과 목질섬유를 복합화한 단순 WPC 배합 조건에서 WPC 내 목질섬유 함량에 대한 분석을 TGA를 이용한 열분석 방법과 AMS를 이용한 바이오 탄소 함량 분석 방법을 통해 진행하였다. TGA를 통한 열분해 분석법은 $5^{\circ}C/min$의 승온속도로 고분자 PP의 최대 미분 온도를 이용하여 신뢰도 높은 WPC 내 목질섬유 함량에 관한 검량선을 얻을 수 있었다. TGA와 AMS의 분석 방법 비교에 있어서는, 바이오 탄소 함량을 이용하는 AMS 분석법이 더 높은 신뢰성을 보여주었다.

Keywords

References

  1. Balasuriya, P.W., Ye, L., Mai, Y.W. 2001. Mechanical properties of wood flake-polyethylene composites. Part I: effects of processing methods and matrix melt flow behavior. Compos A 32(5): 619-629. https://doi.org/10.1016/S1359-835X(00)00160-3
  2. Chun, S.J., Lee, S.Y. 2014. Thermal stability of polypropylene-based wood plastic composites by the addition of ammonium polyphosphate. Journal of The Korean Wood Science and Technology 42(6): 682-690. https://doi.org/10.5658/WOOD.2014.42.6.682
  3. Ehrenstein, G.W., Riedel, G., Trawiel, P. 2003. Praxis der thermischen analyse von kunststoffen, second ed., Carl Hanser Verlag, Munchen.
  4. Funabashi. M., Listyarini. A., Kunioka. M. 2008. Biomass carbon ratio of biobased polymer composites filled with cellulose fibers measured by accelerator mass spectrometry. WIT Transactions on The Built Environment 97: 221-230.
  5. Gwon, J.G., Lee, S.Y., Kim, J.H. 2014. Thermal degradation behavior of polypropylene base wood plastic composites hybridized with metal (aluminum, magnesium) hydroxides. Journal of Applied Polymer Science 131(7): 40120.
  6. Jeske, H., Schirp, A., Cornelius, F. 2012. Development of a thermogravimetric analysis (TGA) method for quantitative analysis of wood flour and polypropylene in wood plastic composites (WPC). Thermochimica Acta 543: 165-171. https://doi.org/10.1016/j.tca.2012.05.016
  7. Kang, I.A., Lee, S.Y., Doh, G.H., Chun, S.J., Yoon, S.L. 2009. Mechanical properties of wood flour-polypropylene composites: Effects of wood species, filler particle size and coupling agent. Journal of The Korean Wood Science and Technology 37(6): 505-516.
  8. Kang, I.A., Lee, S.Y., Doh, G.H., Chun, S.J., Yoon, S.L. 2010. Water absorption of wood flour-polypropylene composites: Effects of wood species, filler particle size and coupling agent. Journal of The Korean Wood Science and Technology 38(4): 298-305. https://doi.org/10.5658/WOOD.2010.38.4.298
  9. Klyosov, A.A. 2007. Wood-plastic composites. A John Wiley & Sons, INC., Publication. ISBN 978-0-470-14891-4.
  10. Lao, W., Li, G., Zhou, Q., Qin, T. 2014. Quantitative analysis of biomass in three typs of wood-plastic composites by FTIR spectroscopy. BioResources 9(4): 6073-6086.
  11. Lee, D.B., Kim, B.J. 2016. A Study on the Thermal Properties and Activation Energy of Rapidly Torrefied Oak Wood Powder using Non-isothermal Thermogravimetric Analysis. Journal of The Korean Wood Science and Technology 44(1): 96-105. https://doi.org/10.5658/WOOD.2016.44.1.96
  12. Lee, S.Y., Chun, S.J.,, Park, S.B., Choi, D.H., Doh, G.H., Kang, I.A., Kim, J,H., Yoon, H.G. 2013. Manufacturing technology of Wood Plastic Composites. National Institute of Forest Science. Research report.
  13. Lee, S.Y., Doh, G.H., Kang, I.A. 2006. Thermal behavior of hwangto and wood flour reinforced high density polyethylene (HDPE) composites. Journal of The Korean Wood Science and Technology 34(5): 59-66.
  14. Li, G., Lao, W., Zou, X., Han, Y., Fan, D. 2016. Use of near-infrared spectroscopy for prediction of biomass and polypropylene in wood plastic composites. Wood Science and Technology 50: 705-714. https://doi.org/10.1007/s00226-016-0799-z
  15. Lin, Q., Zhou, X., Dai, G. 2002. Effect of hydrothermal environment on moisture absorption and mechanical properties of wood flour-filled polypropylene composites. Journal of Applied Polymer Science 85(14): 2824-2832. https://doi.org/10.1002/app.10844
  16. Mankowski, M., Morrell, J.J. 2000. Patterns of fungal attack in wood-plastic composites following exposure in soil block test. Wood Fiber Sci 32(3): 340-345.
  17. National Institute of Forest Science. Wood Engineering. 2016. Standards and Quality standards of wppd products. National Institute of Forest Science. National Institute of Forest Science. Notice 2016-8.
  18. Nunez, A.J., Sturm, P.C., Kenny, J.M., Aranguren, M.I., Marcovich, N.E., Reboredo, M.M. 2003. Mechanical characterization of polypropylene-wood flour composites. Journal of Applied Polymer Science 88(6): 1420-1428. https://doi.org/10.1002/app.11738
  19. Park, J., Hong, W., Park, J.Y., Sung, K.S., Eum, C.H. 2008. Distribution of CO2 produced from fossil fuel by accelerator mass spectrometry: in Daejeon. Analytical Science & Technology 21(1): 9-13.
  20. Sombatsompop, N., Chaochanchaikul, K., Phromchirasulk, C., Thongsang, S. 2003. Effect of wood sawdust content on rheological and structural changes, and thermo-mechanical properties of PVC/sawdust composites. Polymer International 52(12): 1847-1855. https://doi.org/10.1002/pi.1386
  21. Tachibana, Y., Giang, N.T.T., Ninomiya F., Funabashi, M., Kunioka, M. 2010. Cellulose acetate butyrate as multifunctional additive for poly (butylene succinate) by melt blending: Mechanical properties, biomass carbon ratio, and control of biodegradability. Polymer Degradation and Stability 95: 1406-1413. https://doi.org/10.1016/j.polymdegradstab.2010.01.006