실리콘 기반 나노구조 태양전지 연구동향 및 전망

  • 최재영 (동아대학교 신소재공학과) ;
  • 김인호 (한국과학기술연구원 전자재료연구단)
  • Published : 2017.09.30

Abstract

태양전지 발전단가 저감을 위해 실리콘 웨이퍼의 박형화는 필수적인 기술로 인식되어 지고 있으며 이로 인해 얇아진 웨이퍼의 물리적 두께를 보상하기 위한 광포집 기술이 더욱 중요해 지고 있다. 이러한 배경으로 광흡수 효율을 극대화하기 위한 방법으로 실리콘 나노구조를 활용하는 연구가 국내외에 매우 활발하게 진행되고 있다. 주로 실리콘 나노구조의 효과적인 설계를 통해 광포집 효과를 극대화하는 연구가 많이 진행되고 있으며, 실험을 통해 Lambertian 한계에 근접하는 광학적인 성능을 얻은 결과들도 많이 보고되고 있다. 그러나, 아직 마이크로 스케일의 피라미드를 활용한 고효율 태양전지의 효율을 상회하지는 못하고 있는 실정이다. 본 논문에서는 실리콘 나노구조를 이용한 광포집 효과의 이론적 한계, 이를 극복하기 위한 연구동향, 저비용 나노구조 제조 공정, 결정질 실리콘 태양전지에의 응용을 위한 기술적 이슈에 대해 논의를 하고자 한다.

Keywords

References

  1. Liu, X., et al., Black silicon: fabrication methods, properties and solar energy applications. Energy & Environmental Science, 2014. 7(10), p. 3223-3263. https://doi.org/10.1039/C4EE01152J
  2. Martins, E.R., et al., Deterministic quasi-random nanostructures for photon control. 2013. 4, p. 2665.
  3. Han, S.E. and G. Chen, Toward the Lambertian Limit of Light Trapping in Thin Nanostructured Silicon Solar Cells. Nano Letters, 2010. 10(11), p. 4692-4696. https://doi.org/10.1021/nl1029804
  4. Yu, Z., A. Raman, and S. Fan, Fundamental limit of nanophotonic light trapping in solar cells. Proceedings of the National Academy of Sciences, 2010. 107(41), p. 17491-17496. https://doi.org/10.1073/pnas.1008296107
  5. Mokkapati, S. and K.R. Catchpole, Nanophotonic light trapping in solar cells. Journal of Applied Physics, 2012. 112(10), p. 101101. https://doi.org/10.1063/1.4747795
  6. Boden, S.A. and D.M. Bagnall, Tunable reflection minima of nanostructured antireflective surfaces. Applied Physics Letters, 2008. 93(13), p. 133108. https://doi.org/10.1063/1.2993231
  7. Kuo, M.-L., et al., Realization of a near-perfect antireflection coating for silicon solar energy utilization. Optics Letters, 2008. 33(21), p. 2527-2529. https://doi.org/10.1364/OL.33.002527
  8. Moreau, W.M., Semiconductor lithography: principles, practices, and materials. 2012: Springer Science & Business Media.
  9. Elliott, D.J., Integrated circuit fabrication technology. 1982.
  10. Madou, M.J., Fundamentals of microfabrication: the science of miniaturization. 2002: CRC press.
  11. Gates, B.D., et al., New approaches to nanofabrication:molding, printing, and other techniques. Chemical reviews, 2005. 105(4), p. 1171-1196. https://doi.org/10.1021/cr030076o
  12. Wagner, C. and N. Harned, EUV lithography: Lithography gets extreme. Nature Photonics, 2010. 4(1), p. 24-26. https://doi.org/10.1038/nphoton.2009.251
  13. Bakshi, V., EUV lithography. Vol. 178. 2009: Spie Press.
  14. Pimpin, A. and W. Srituravanich, Review on micro-and nanolithography techniques and their applications. Engineering Journal, 2011. 16(1), p. 37-56. https://doi.org/10.4186/ej.2012.16.1.37
  15. Roos, N., et al. Nanoimprint lithography with a commercial 4 inch bond system for hot embossing. in Proc. SPIE. 2001.
  16. Bender, M., et al., Fabrication of nanostructures using a UV-based imprint technique. Microelectronic Engineering, 2000. 53(1-4), p. 233-236. https://doi.org/10.1016/S0167-9317(00)00304-X
  17. Chou, S.Y., P.R. Krauss, and P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science, 1996. 272(5258), p. 85. https://doi.org/10.1126/science.272.5258.85
  18. Hong, S.-H., J.-H. Lee, and H. Lee, Fabrication of 50nm patterned nickel stamp with hot embossing and electroforming process. Microelectronic Engineering, 2007. 84(5), p. 977-979. https://doi.org/10.1016/j.mee.2007.01.101
  19. Mohamed, K., M. Alkaisi, and R. Blaikie, Fabrication of three dimensional structures for an UV curable nanoimprint lithography mold using variable dose control with critical-energy electron beam exposure. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2007. 25(6), p. 2357-2360. https://doi.org/10.1116/1.2794317
  20. Huang, J., et al., Spontaneous formation of nanoparticle stripe patterns through dewetting. Nature materials, 2005. 4(12), p. 896. https://doi.org/10.1038/nmat1517
  21. Hsu, C.-M., et al., Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching. Applied Physics Letters, 2008. 93(13), p. 133109. https://doi.org/10.1063/1.2988893
  22. Zheng, P., et al., Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering. Physical Chemistry Chemical Physics, 2015. 17(33), p. 21211-21219. https://doi.org/10.1039/C4CP05291A
  23. Choi, J.-Y., T. Alford, and C.B. Honsberg, Fabrication of periodic silicon nanopillars in a two-dimensional hexagonal array with enhanced control on structural dimension and period. Langmuir, 2015. 31(13), p. 4018-4023. https://doi.org/10.1021/acs.langmuir.5b00128
  24. Ogi, T., et al., Fabrication of a large area monolayer of silica particles on a sapphire substrate by a spin coating method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 297(1), p. 71-78. https://doi.org/10.1016/j.colsurfa.2006.10.027
  25. Altissimo, M., E-beam lithography for micro-/nanofabrication. Biomicrofluidics, 2010. 4(2), p. 026503. https://doi.org/10.1063/1.3437589
  26. Chun, S.-w., et al., Multi-step ion beam etching of sub-30 nm magnetic tunnel junctions for reducing leakage and MgO barrier damage. Journal of Applied Physics, 2012. 111(7), p. 07C722. https://doi.org/10.1063/1.3679153
  27. Yahaya, N.A., et al., Characterization of light absorption in thin-film silicon with periodic nanohole arrays. Optics express, 2013. 21(5), p. 5924-5930. https://doi.org/10.1364/OE.21.005924
  28. Sainiemi, L., et al., Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis. Nanotechnology, 2007. 18(50), p. 505303. https://doi.org/10.1088/0957-4484/18/50/505303
  29. Teo, S.H., et al., Deep reactive ion etching for pillar type nanophotonic crystal. International Journal of Nanoscience, 2005. 4(04), p. 567-574. https://doi.org/10.1142/S0219581X05003590
  30. Morton, K.J., et al., Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (> 50: 1) silicon pillar arrays by nanoimprint and etching. Nanotechnology, 2008. 19(34), p. 345301. https://doi.org/10.1088/0957-4484/19/34/345301
  31. Garnett, E. and P. Yang, Light trapping in silicon nanowire solar cells. Nano letters, 2010. 10(3), p. 1082-1087. https://doi.org/10.1021/nl100161z
  32. Peng, K.-Q., et al., High-performance silicon nanohole solar cells. Journal of the American Chemical Society, 2010. 132(20), p. 6872-6873. https://doi.org/10.1021/ja910082y
  33. Ko, M.-D., et al., High efficiency silicon solar cell based on asymmetric nanowire. Scientific reports, 2015. 5.
  34. Jeong, S., M.D. McGehee, and Y. Cui, All-backcontact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nature communications, 2013. 4: p. 2950. https://doi.org/10.1038/ncomms3950
  35. Coburn, J. and H.F. Winters, Ion-and electron-assisted gas-surface chemistry-An important effect in plasma etching. Journal of Applied Physics, 1979. 50(5), p. 3189-3196. https://doi.org/10.1063/1.326355
  36. Xiu, F., et al., Fabrication and enhanced lighttrapping properties of three-dimensional silicon nanostructures for photovoltaic applications. Pure and Applied Chemistry, 2014. 86(5), p. 557-573. https://doi.org/10.1515/pac-2013-1119
  37. Shul, R.J. and S.J. Pearton, Handbook of advanced plasma processing techniques. 2011: Springer Science & Business Media.
  38. Murad, S., et al., Dry etching damage in III-V semiconductors. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1996. 14(6), p. 3658-3662. https://doi.org/10.1116/1.588745
  39. Ping, A., et al., Characterization of reactive ion etching-induced damage to n-GaN surfaces using schottky diodes. Journal of Electronic Materials, 1997. 26(3), p. 266-271. https://doi.org/10.1007/s11664-997-0162-0
  40. Pang, S., et al., Damage induced in Si by ion milling or reactive ion etching. Journal of Applied Physics, 1983. 54(6), p. 3272-3277. https://doi.org/10.1063/1.332437
  41. Zaidi, S.H., D.S. Ruby, and J.M. Gee, Characterization of random reactive ion etched-textured silicon solar cells. IEEE Transactions on Electron Devices, 2001. 48(6), p. 1200-1206. https://doi.org/10.1109/16.925248
  42. Lalanne, P. and G.M. Morris, Antireflection behavior of silicon subwavelength periodic structures for visible light. Nanotechnology, 1997. 8(2), p. 53. https://doi.org/10.1088/0957-4484/8/2/002
  43. Kayes, B.M., H.A. Atwater, and N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. Journal of Applied Physics, 2005. 97(11), p. 114302. https://doi.org/10.1063/1.1901835
  44. Li, X. and P. Bohn, Metal-assisted chemical etching in HF/H 2 O 2 produces porous silicon. Applied Physics Letters, 2000. 77(16), p. 2572-2574.
  45. Huang, Z., et al., Metal-assisted chemical etching of silicon: a review. Advanced materials, 2011. 23(2), p. 285-308. https://doi.org/10.1002/adma.201001784
  46. Lin, H., et al., Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping. Journal of Materials Chemistry A, 2013. 1(34), p. 9942-9946. https://doi.org/10.1039/c3ta11889d
  47. Li, X., Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics. Current Opinion in Solid State and Materials Science, 2012. 16(2), p. 71-81. https://doi.org/10.1016/j.cossms.2011.11.002
  48. Wagner, R. and W. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters, 1964. 4(5), p. 89-90. https://doi.org/10.1063/1.1753975
  49. Wu, Y. and P. Yang, Direct observation of vapor-liquid-solid nanowire growth. Journal of the American Chemical Society, 2001. 123(13), p. 3165-3166. https://doi.org/10.1021/ja0059084
  50. Gunawan, O. and S. Guha, Characteristics of vapor -liquid-solid grown silicon nanowire solar cells. Solar Energy Materials and Solar Cells, 2009. 93(8), p. 1388-1393. https://doi.org/10.1016/j.solmat.2009.02.024
  51. Mart, A., et al., Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell. Thin Solid Films, 2006. 511: p. 638-644.
  52. Tsakalakos, L., et al., Silicon nanowire solar cells. Applied Physics Letters, 2007. 91(23), p. 233117. https://doi.org/10.1063/1.2821113
  53. Allen, J.E., et al., High-resolution detection of Au catalyst atoms in Si nanowires. Nature nanotechnology, 2008. 3(3), p. 168-173. https://doi.org/10.1038/nnano.2008.5
  54. Pan, Z., et al., Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. The Journal of Physical Chemistry B, 2001. 105(13), p. 2507-2514. https://doi.org/10.1021/jp004253q
  55. Kayes, B.M., et al., Growth of vertically aligned Si wire arrays over large areas (> 1 cm 2) with Au and Cu catalysts. Applied Physics Letters, 2007. 91(10), p. 103110. https://doi.org/10.1063/1.2779236
  56. Ke, Y., et al., Carrier gas effects on aluminumcatalyzed nanowire growth. Nanotechnology, 2016. 27(13), p. 135605. https://doi.org/10.1088/0957-4484/27/13/135605
  57. Moyen, E., et al., Si nanowires grown by Al-catalyzed plasma-enhanced chemical vapor deposition: synthesis conditions, electrical properties and application to lithium battery anodes. Materials Research Express, 2016. 3(1), p. 015003. https://doi.org/10.1088/2053-1591/3/1/015003
  58. Ishiyama, T., S. Nakagawa, and T. Wakamatsu, Growth of epitaxial silicon nanowires on a Si substrate by a metal-catalyst-free process. Scientific reports, 2016. 6: p. 30608. https://doi.org/10.1038/srep30608
  59. Zhong, S., et al., High-Efficiency Nanostructured Silicon Solar Cells on a Large Scale Realized Through the Suppression of Recombination Channels. Advanced Materials, 2015. 27(3), p. 555-561. https://doi.org/10.1002/adma.201401553
  60. Lin, X.X., et al., Realization of high performance silicon nanowire based solar cells with large size. Nanotechnology, 2013. 24(23), p. 235402. https://doi.org/10.1088/0957-4484/24/23/235402
  61. Oh, J., H.-C. Yuan, and H.M. Branz, An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat Nano, 2012. 7(11), p. 743-748. https://doi.org/10.1038/nnano.2012.166
  62. Savin, H., et al., Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat Nano, 2015. 10(7), p. 624-628. https://doi.org/10.1038/nnano.2015.89