References
- Liu, X., et al., Black silicon: fabrication methods, properties and solar energy applications. Energy & Environmental Science, 2014. 7(10), p. 3223-3263. https://doi.org/10.1039/C4EE01152J
- Martins, E.R., et al., Deterministic quasi-random nanostructures for photon control. 2013. 4, p. 2665.
- Han, S.E. and G. Chen, Toward the Lambertian Limit of Light Trapping in Thin Nanostructured Silicon Solar Cells. Nano Letters, 2010. 10(11), p. 4692-4696. https://doi.org/10.1021/nl1029804
- Yu, Z., A. Raman, and S. Fan, Fundamental limit of nanophotonic light trapping in solar cells. Proceedings of the National Academy of Sciences, 2010. 107(41), p. 17491-17496. https://doi.org/10.1073/pnas.1008296107
- Mokkapati, S. and K.R. Catchpole, Nanophotonic light trapping in solar cells. Journal of Applied Physics, 2012. 112(10), p. 101101. https://doi.org/10.1063/1.4747795
- Boden, S.A. and D.M. Bagnall, Tunable reflection minima of nanostructured antireflective surfaces. Applied Physics Letters, 2008. 93(13), p. 133108. https://doi.org/10.1063/1.2993231
- Kuo, M.-L., et al., Realization of a near-perfect antireflection coating for silicon solar energy utilization. Optics Letters, 2008. 33(21), p. 2527-2529. https://doi.org/10.1364/OL.33.002527
- Moreau, W.M., Semiconductor lithography: principles, practices, and materials. 2012: Springer Science & Business Media.
- Elliott, D.J., Integrated circuit fabrication technology. 1982.
- Madou, M.J., Fundamentals of microfabrication: the science of miniaturization. 2002: CRC press.
- Gates, B.D., et al., New approaches to nanofabrication:molding, printing, and other techniques. Chemical reviews, 2005. 105(4), p. 1171-1196. https://doi.org/10.1021/cr030076o
- Wagner, C. and N. Harned, EUV lithography: Lithography gets extreme. Nature Photonics, 2010. 4(1), p. 24-26. https://doi.org/10.1038/nphoton.2009.251
- Bakshi, V., EUV lithography. Vol. 178. 2009: Spie Press.
- Pimpin, A. and W. Srituravanich, Review on micro-and nanolithography techniques and their applications. Engineering Journal, 2011. 16(1), p. 37-56. https://doi.org/10.4186/ej.2012.16.1.37
- Roos, N., et al. Nanoimprint lithography with a commercial 4 inch bond system for hot embossing. in Proc. SPIE. 2001.
- Bender, M., et al., Fabrication of nanostructures using a UV-based imprint technique. Microelectronic Engineering, 2000. 53(1-4), p. 233-236. https://doi.org/10.1016/S0167-9317(00)00304-X
- Chou, S.Y., P.R. Krauss, and P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science, 1996. 272(5258), p. 85. https://doi.org/10.1126/science.272.5258.85
- Hong, S.-H., J.-H. Lee, and H. Lee, Fabrication of 50nm patterned nickel stamp with hot embossing and electroforming process. Microelectronic Engineering, 2007. 84(5), p. 977-979. https://doi.org/10.1016/j.mee.2007.01.101
- Mohamed, K., M. Alkaisi, and R. Blaikie, Fabrication of three dimensional structures for an UV curable nanoimprint lithography mold using variable dose control with critical-energy electron beam exposure. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2007. 25(6), p. 2357-2360. https://doi.org/10.1116/1.2794317
- Huang, J., et al., Spontaneous formation of nanoparticle stripe patterns through dewetting. Nature materials, 2005. 4(12), p. 896. https://doi.org/10.1038/nmat1517
- Hsu, C.-M., et al., Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching. Applied Physics Letters, 2008. 93(13), p. 133109. https://doi.org/10.1063/1.2988893
- Zheng, P., et al., Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering. Physical Chemistry Chemical Physics, 2015. 17(33), p. 21211-21219. https://doi.org/10.1039/C4CP05291A
- Choi, J.-Y., T. Alford, and C.B. Honsberg, Fabrication of periodic silicon nanopillars in a two-dimensional hexagonal array with enhanced control on structural dimension and period. Langmuir, 2015. 31(13), p. 4018-4023. https://doi.org/10.1021/acs.langmuir.5b00128
- Ogi, T., et al., Fabrication of a large area monolayer of silica particles on a sapphire substrate by a spin coating method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 297(1), p. 71-78. https://doi.org/10.1016/j.colsurfa.2006.10.027
- Altissimo, M., E-beam lithography for micro-/nanofabrication. Biomicrofluidics, 2010. 4(2), p. 026503. https://doi.org/10.1063/1.3437589
- Chun, S.-w., et al., Multi-step ion beam etching of sub-30 nm magnetic tunnel junctions for reducing leakage and MgO barrier damage. Journal of Applied Physics, 2012. 111(7), p. 07C722. https://doi.org/10.1063/1.3679153
- Yahaya, N.A., et al., Characterization of light absorption in thin-film silicon with periodic nanohole arrays. Optics express, 2013. 21(5), p. 5924-5930. https://doi.org/10.1364/OE.21.005924
- Sainiemi, L., et al., Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis. Nanotechnology, 2007. 18(50), p. 505303. https://doi.org/10.1088/0957-4484/18/50/505303
- Teo, S.H., et al., Deep reactive ion etching for pillar type nanophotonic crystal. International Journal of Nanoscience, 2005. 4(04), p. 567-574. https://doi.org/10.1142/S0219581X05003590
- Morton, K.J., et al., Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (> 50: 1) silicon pillar arrays by nanoimprint and etching. Nanotechnology, 2008. 19(34), p. 345301. https://doi.org/10.1088/0957-4484/19/34/345301
- Garnett, E. and P. Yang, Light trapping in silicon nanowire solar cells. Nano letters, 2010. 10(3), p. 1082-1087. https://doi.org/10.1021/nl100161z
- Peng, K.-Q., et al., High-performance silicon nanohole solar cells. Journal of the American Chemical Society, 2010. 132(20), p. 6872-6873. https://doi.org/10.1021/ja910082y
- Ko, M.-D., et al., High efficiency silicon solar cell based on asymmetric nanowire. Scientific reports, 2015. 5.
- Jeong, S., M.D. McGehee, and Y. Cui, All-backcontact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nature communications, 2013. 4: p. 2950. https://doi.org/10.1038/ncomms3950
- Coburn, J. and H.F. Winters, Ion-and electron-assisted gas-surface chemistry-An important effect in plasma etching. Journal of Applied Physics, 1979. 50(5), p. 3189-3196. https://doi.org/10.1063/1.326355
- Xiu, F., et al., Fabrication and enhanced lighttrapping properties of three-dimensional silicon nanostructures for photovoltaic applications. Pure and Applied Chemistry, 2014. 86(5), p. 557-573. https://doi.org/10.1515/pac-2013-1119
- Shul, R.J. and S.J. Pearton, Handbook of advanced plasma processing techniques. 2011: Springer Science & Business Media.
- Murad, S., et al., Dry etching damage in III-V semiconductors. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1996. 14(6), p. 3658-3662. https://doi.org/10.1116/1.588745
- Ping, A., et al., Characterization of reactive ion etching-induced damage to n-GaN surfaces using schottky diodes. Journal of Electronic Materials, 1997. 26(3), p. 266-271. https://doi.org/10.1007/s11664-997-0162-0
- Pang, S., et al., Damage induced in Si by ion milling or reactive ion etching. Journal of Applied Physics, 1983. 54(6), p. 3272-3277. https://doi.org/10.1063/1.332437
- Zaidi, S.H., D.S. Ruby, and J.M. Gee, Characterization of random reactive ion etched-textured silicon solar cells. IEEE Transactions on Electron Devices, 2001. 48(6), p. 1200-1206. https://doi.org/10.1109/16.925248
- Lalanne, P. and G.M. Morris, Antireflection behavior of silicon subwavelength periodic structures for visible light. Nanotechnology, 1997. 8(2), p. 53. https://doi.org/10.1088/0957-4484/8/2/002
- Kayes, B.M., H.A. Atwater, and N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. Journal of Applied Physics, 2005. 97(11), p. 114302. https://doi.org/10.1063/1.1901835
- Li, X. and P. Bohn, Metal-assisted chemical etching in HF/H 2 O 2 produces porous silicon. Applied Physics Letters, 2000. 77(16), p. 2572-2574.
- Huang, Z., et al., Metal-assisted chemical etching of silicon: a review. Advanced materials, 2011. 23(2), p. 285-308. https://doi.org/10.1002/adma.201001784
- Lin, H., et al., Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping. Journal of Materials Chemistry A, 2013. 1(34), p. 9942-9946. https://doi.org/10.1039/c3ta11889d
- Li, X., Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics. Current Opinion in Solid State and Materials Science, 2012. 16(2), p. 71-81. https://doi.org/10.1016/j.cossms.2011.11.002
- Wagner, R. and W. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters, 1964. 4(5), p. 89-90. https://doi.org/10.1063/1.1753975
- Wu, Y. and P. Yang, Direct observation of vapor-liquid-solid nanowire growth. Journal of the American Chemical Society, 2001. 123(13), p. 3165-3166. https://doi.org/10.1021/ja0059084
- Gunawan, O. and S. Guha, Characteristics of vapor -liquid-solid grown silicon nanowire solar cells. Solar Energy Materials and Solar Cells, 2009. 93(8), p. 1388-1393. https://doi.org/10.1016/j.solmat.2009.02.024
- Mart, A., et al., Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell. Thin Solid Films, 2006. 511: p. 638-644.
- Tsakalakos, L., et al., Silicon nanowire solar cells. Applied Physics Letters, 2007. 91(23), p. 233117. https://doi.org/10.1063/1.2821113
- Allen, J.E., et al., High-resolution detection of Au catalyst atoms in Si nanowires. Nature nanotechnology, 2008. 3(3), p. 168-173. https://doi.org/10.1038/nnano.2008.5
- Pan, Z., et al., Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. The Journal of Physical Chemistry B, 2001. 105(13), p. 2507-2514. https://doi.org/10.1021/jp004253q
- Kayes, B.M., et al., Growth of vertically aligned Si wire arrays over large areas (> 1 cm 2) with Au and Cu catalysts. Applied Physics Letters, 2007. 91(10), p. 103110. https://doi.org/10.1063/1.2779236
- Ke, Y., et al., Carrier gas effects on aluminumcatalyzed nanowire growth. Nanotechnology, 2016. 27(13), p. 135605. https://doi.org/10.1088/0957-4484/27/13/135605
- Moyen, E., et al., Si nanowires grown by Al-catalyzed plasma-enhanced chemical vapor deposition: synthesis conditions, electrical properties and application to lithium battery anodes. Materials Research Express, 2016. 3(1), p. 015003. https://doi.org/10.1088/2053-1591/3/1/015003
- Ishiyama, T., S. Nakagawa, and T. Wakamatsu, Growth of epitaxial silicon nanowires on a Si substrate by a metal-catalyst-free process. Scientific reports, 2016. 6: p. 30608. https://doi.org/10.1038/srep30608
- Zhong, S., et al., High-Efficiency Nanostructured Silicon Solar Cells on a Large Scale Realized Through the Suppression of Recombination Channels. Advanced Materials, 2015. 27(3), p. 555-561. https://doi.org/10.1002/adma.201401553
- Lin, X.X., et al., Realization of high performance silicon nanowire based solar cells with large size. Nanotechnology, 2013. 24(23), p. 235402. https://doi.org/10.1088/0957-4484/24/23/235402
- Oh, J., H.-C. Yuan, and H.M. Branz, An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat Nano, 2012. 7(11), p. 743-748. https://doi.org/10.1038/nnano.2012.166
- Savin, H., et al., Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat Nano, 2015. 10(7), p. 624-628. https://doi.org/10.1038/nnano.2015.89