DOI QR코드

DOI QR Code

Anti-Inflammatory and Anti-Oxidative Effect of Pinus koraiensis Cone Shell Extracts

잣피 추출물들의 항산화 및 항염증에 미치는 영향

  • Jin, Joong Hyun (Department of Gerontology, Kyung Hee University) ;
  • Kwon, Han Ol (Department of Medical Nutrition, Kyung Hee University) ;
  • Ha, Yejin (Department of Medical Nutrition, Kyung Hee University) ;
  • Heo, Seok Hyun (Korea Health Supplements Association) ;
  • Lee, Jeongmin (Department of Medical Nutrition, Kyung Hee University)
  • 진중현 (경희대학교 동서의학대학원 노인학과) ;
  • 권한올 (경희대학교 동서의학대학원 의학영양학과) ;
  • 하예진 (경희대학교 동서의학대학원 의학영양학과) ;
  • 허석현 (한국건강기능식품협회) ;
  • 이정민 (경희대학교 동서의학대학원 의학영양학과)
  • Received : 2017.06.20
  • Accepted : 2017.08.16
  • Published : 2017.09.30

Abstract

The present study examined the anti-inflammatory and anti-oxidative effects of Pinus koraiensis (PK) cone shell extracts in vitro. Anti-inflammatory and anti-oxidative effects of PK cone shell extracted with hot water, 20% ethanol (EtOH), or 50% EtOH were examined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activites, as well as nitric oxide (NO) and anti-inflammatory cytokine measurements. The 20% EtOH extract of the PK cone shell decreased the NO and inflammatory cytokines secretion, and increased the ABTS radical scavenging, SOD, CAT, and GPx activities. This indicates that the 20% EtOH extract of the PK cone shell would be helpful in inflammation and oxidation systems. Therefore, the 20% EtOH extract of PK cone shell has great potential as a useful health food.

본 연구에서는 잣피 열수, 20% 주정, 50% 주정 추출물들이 항염증과 항산화에 미치는 영향을 확인하기 위하여 ABTS 항산화능과 SOD, CAT, GPx 항산화 효소, NO의 분비량, 염증성 cytokine의 분비량을 살펴보고자 하였다. 잣피 열수, 20% 주정, 50% 주정 추출물 중 20% 주정 추출물이 항산화능, 항산화 효소 활성 증가, NO의 분비량 감소, 염증성 cytokine 분비량을 감소시켜 염증반응과 항산화 반응에 도움을 주어 내부에서 생성된 활성산소종과 외부로부터 침입한 미생물, 감염된 세포나 종양세포 등을 효과적으로 제거할 수 있을 것이라 예상할 수 있었다. 이는 염증뿐만 아니라 면역반응에서도 영향을 미칠 것이라 생각되며 염증조절 및 항산화 반응에 긍정적인 변화를 보였으므로 추후 염증 조절제로서 기능성 식품의 상업화에 기초 자료가 되어 국내 기능성 소재로서의 개발 가능성을 기대할 수 있다.

Keywords

References

  1. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-48. https://doi.org/10.1016/j.biocel.2006.07.001
  2. Halliwell B, Gutteridge J. 1999. Free radical in biology and medicine. Oxford University Press Co., New York, NY, USA. p 968.
  3. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 144: 1752-1761.
  4. Halliwell B. 1996. Antioxidants in human health and disease. Annu Rev Nutr 16: 33-50. https://doi.org/10.1146/annurev.nu.16.070196.000341
  5. Olefsky JM, Glass CK. 2010. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72: 219-246. https://doi.org/10.1146/annurev-physiol-021909-135846
  6. Hotamisligil GS. 2006. Inflammation and metabolic disorders. Nature 444: 860-867. https://doi.org/10.1038/nature05485
  7. Valledor AF, Comalada M, Santamaria-Babi LF, Lloberas J, Celada A. 2010. Macrophage proinflammatory activation and deactivation: A question of balance. Adv Immunol 108: 1-20.
  8. Jung SH, Kim SJ, Jun BG, Lee KT, Hong SP, Oh MS, Jang DS, Choi JH. 2013. ${\alpha}$-Cyperone, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced COX-2 expression and PGE2 production through the negative regulation of NF${\kappa}B$ signalling in RAW 264.7 cells. J Ethnopharmacol 147: 208-214. https://doi.org/10.1016/j.jep.2013.02.034
  9. Yu A, Park HY, Kim YS, Ha SK, Hong HD, Choi HD. 2012. Immuno-enhancing effect of seed extracts on a RAW 264.7 macrophage cell line. J Korean Soc Food Sci Nutr 41: 1671-1676. https://doi.org/10.3746/jkfn.2012.41.12.1671
  10. Lee JH, Yang HY, Lee HS, Hong SK. 2008. Chemical composition and antimicrobial activity of essential oil form cones of Pinus koraiensis. J Microbiol Biotechnol 18: 497-502.
  11. Su XY, Wang ZY, Liu JR. 2009. In vitro and in vivo antioxidant activity of Pinus koraiensis seed extract containing phenolic compouds. Food Chem 117: 681-686. https://doi.org/10.1016/j.foodchem.2009.04.076
  12. Karas D, Ulrichova J, Valentova K. 2017. Galloylation of polyphenols alters their biological activity. Food Chem Toxicol 105: 223-240. https://doi.org/10.1016/j.fct.2017.04.021
  13. Van den Berg R, Haenen GRMM, Van den Berg H, Bast A. 1999. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem 66: 511-517. https://doi.org/10.1016/S0308-8146(99)00089-8
  14. Bendich A, Machlin LJ, Scandurra O, Burton GW, Wayner DDM. 1986. The antioxidant role of vitamin C. Free Radic Biol Med 2: 419-444. https://doi.org/10.1016/S8755-9668(86)80021-7
  15. Dufresne CJ, Farnworth ER. 2001. A review of latest research findings on the health promotion properties of tea. J Nutr Biochem 12: 404-421. https://doi.org/10.1016/S0955-2863(01)00155-3
  16. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  17. Aebi H. 1984. Catalase in vitro. Methods Enzymol 105: 121-126.
  18. Paglia DE, Valentine WN. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70: 158-169.
  19. Curran RD, Billiar TR, Stuehr DJ, Hofmann K, Simmons RL. 1989. Hepatocytes produce nitrogen oxides from L-arginine in response to inflammatory products of Kupffer cells. J Exp Med 170: 1769-1774. https://doi.org/10.1084/jem.170.5.1769
  20. Hibbs JB Jr, Vavrin Z, Taintor RR. 1987. L-Arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 138: 550-565.
  21. Ioannidis I, de Groot H. 1993. Cytotoxicity of nitric oxide in Fu5 rat hepatoma cells: Evidence for co-operative action with hydrogen peroxide. Biochem J 296: 341-345. https://doi.org/10.1042/bj2960341
  22. Curran RD, Billiar TR, Stuehr DJ, Ochoa JB, Harbrecht BG, Flint SG, Simmons RL. 1990. Multiple cytokines are required to induce hepatocyte nitric oxide production and inhibit total protein synthesis. Ann Surg 212: 462-471. https://doi.org/10.1097/00000658-199010000-00009
  23. Del Toro-Arreola S, Flores-Torales E, Torres-Lozano C, Del Toro-Arreola A, Tostado-Pelayo K, Guadalupe Ramirez-Duenas M, Daneri-Navarro A. 2005. Effect of D-limonene on immune response in BALB/c mice with lymphoma. Int Immunopharmacol 5: 829-838. https://doi.org/10.1016/j.intimp.2004.12.012
  24. Higuchi M, Higashi N, Taki H, Osawa T. 1990. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergisti cally as the major cytolytic mechanisms of activated macrophages. J Immunol 144: 1425-1431.
  25. Ljung T, Lundberg S, Varsanyi M, Johansson C, Schmidt PT, Herulf M, Lundberg JO, Hellstrom PM. 2006. Rectal nitric oxide as biomarker in the treatment of inflammatory bowel disease: responders versus nonresponders. World J Gastroenterol 12: 3368-3392. https://doi.org/10.3748/wjg.v12.i21.3368