Note (Genome Announcement)

Complete genome sequence of *Streptococcus mitis* KCOM 1350 isolated from a human mandibular osteomyelitis lesion

Soon-Nang Park^{1†}, Yun Kyong Lim^{1†}, Ja Young Shin², Hanseong Roh², and Joong-Ki Kook^{1,3*}

¹Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea

²Macrogen Inc., Seoul 08511, Republic of Korea

³Oral Biology Research Institute, Chosun University, Gwangju 61452, Republic of Korea

사람 하악 골수염 병소에서 분리된 *Streptococcus mitis* KCOM 1350의 유전체 염기서열 해독

박순낭^{1†} · 임윤경^{1†} · 신자영² · 노한성² · 국중기^{1,3*}

¹조선대학교 치과대학 구강생화학교실 및 한국구강미생물자원은행, ²마크로젠, ³조선대학교 구강생물학연구소

(Received August 22, 2017; Revised August 30, 2017; Accepted August 30, 2017)

Streptococcus mitis is a Gram-positive, facultative anaerobic, alpha-hemolytic, and nonmotile cocci. *S. mitis* is a viridans streptococci and a normal commensal of throat, nasopharynx, and mouse and is associated with infective endocarditis, septicemia, and meningitis. *S. mitis* KCOM 1350 (= ChDC B183) was isolated from a human mandibular osteomyelitis lesion. Here, we present the complete genome sequence of *S. mitis* KCOM 1350.

Keywords: Streptococcus mitis, osteomyelitis

Streptococcus mitis is a Gram-positive, facultative anaerobic, alpha-hemolytic, and nonmotile cocci. *S. mitis* is a viridans streptococci and a normal commensal of throat, nasopharynx, and mouse and is associated with infective endocarditis, septicemia, and meningitis (Kutlu *et al.*, 2008; Mitchell, 2011). *Streptococcus mitis* KCOM 1350 (= ChDC B183) was isolated from a human mandibular osteomyelitis lesion. In this report,

we present the complete genome sequence of *S. mitis* KCOM 1350.

The *S. mitis* KCOM 1350 was grown in brain heart infusion (BHI, Difco Laboratories) medium supplemented with 0.5% yeast extract, 0.05% cysteine HCl-H₂O, 0.5 mg/ml of hemin, 2 μ g/ml of vitamin K₁, and 5% sheep blood in an anaerobic chamber (Model Bactron I) was maintained using a gas mixture of 10% H₂, 5% CO₂, and 85% N₂ (Park *et al.*, 2013). The bacterial genomic DNA was prepared as described previously and DNA concentration was determined by the EpochTM Microplate Spectrophotometer (BioTek Instruments Inc.) at wavelengths of 260 and 280 nm (Cho *et al.*, 2015).

The genomic DNA of *S. mitis* KCOM 1350 was sequenced by the Illumina Hiseq 2000 platform by Macrogen Inc. (Korea). Two libraries of 350 bp paired-end and 5 kb mate-pair was sequenced which reached coverage of 2,894X and 257X, respectively. The de novo assembly was performed by ALLPATHS-LG (Gnerre *et al.*, 2011) which produced one circular large scaffold and 7 tiny scaffolds. All 45 gaps among the scaffolds were filled by GapCloser (Luo *et al.*, 2012; http://sourceforge.net/

[†]These authors contributed equally to this work.

^{*}For correspondence. E-mail: jkkook@chosun.ac.kr;

Tel.: +82-62-230-6877; Fax: +82-62-224-3706

Table 1. Genome features of Streptococcus mitis KCOM 1350

Attribute	Value
Genome size (bp)	1,906,344
GC content (%)	40.2
No. of contigs	1
Total genes	1,934
Protein-coding genes	1,792
tRNA	46
rRNA (5S, 16S, 23S)	9 (3, 3, 3)
ncRNA	3
Pseudogene	84

projects/soapdenovo2/files/GapCloser). And we confirmed the 7 tiny scaffolds were placed at gaps on the largest scaffold by dot plot analysis. Finally, the assembly was polished by iCORN2 (Otto *et al.*, 2010). Genome annotation was conducted by the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (https:// www.ncbi.nlm.nih.gov/genome/annotation_prok/).

The complete genome of S. mitis KCOM 1350 is 1,906,344 bp in length and has a G + C content of 40.2% (Table 1). A total of 1,792 protein-coding sequences (CDSs), 9 rRNAs, and 46 tRNAs were annotated (Table 1). The genome contained virulence factors such as multidrug export protein MepA, multidrug resistance protein NorM, multidrug resistance ABC trainsproter ATP-binding/permease protein YheI, macrolide export ATPbinding/permease protein MacB, toxin A, toxin B, toxin RelK, toxin-antitoxin biofilm protein TabA, autolysin, IgA protease, zinc metalloprotease, capsule biosynthesis protein CapA, capsule synthesis positive regulator AcpA, and hemolysin A. The genome contained oxidative stress-response genes such as superoxide dismutase, glutathione peroxidase, thiol peroxidase, thioredoxin, thoredoxin reductase, and glutaredoxin. The genome also contained bacteriocin (Lactococcin 972), type II secretion system protein E/F, type II secretory pathway pseudopilin, lactococcin A secretion protein LcnD, and the eleven twocomponent systems. The Streptococcus mitis KCOM 1350 strain was deposited in the Korean Collection for Oral Microbiology.

Nucleotide sequence accession number

This whole genome sequence was deposited in GenBank under accession number NZ_CP012646.

적 요

Streptococcus mitis는 그람 양성이면서, 통성 혐기성, 알파-용혈성 및 비운동성 구균이다. S. mitis는 인후, 비인두 및 구강 내 정상 세균총의 하나이고, 감염성 심내막염, 폐혈증 및 뇌수 막염과 연관이 있다. KCOM 1350 (= ChDC B183) 균주가 사 람 하악골 골수염 병소에서 분리되었다. S. mitis KCOM 1350 균주 유전체 염기서열을 해독하여 보고한다.

Acknowledgements

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (NRF-2017M3A9B8065844).

References

- Cho, E., Park, S.N., Lim, Y.K., Shin, Y., Paek, J., Hwang, C.H., Chang, Y.H., and Kook, J.K. 2015. Fusobacterium hwasookii sp. nov., isolated from a human periodontitis lesion. Curr. Microbiol. 70, 169–175.
- Gnerre, S., Maccallum, I., Przybylski, D., Ribeiro, F.J., Burton, J.N., Walker, B.J., Sharpe, T., Hall, G., Shea, T.P., Sykes, S., *et al.* 2011. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. *Proc. Natl. Acad. Sci.* USA 108, 1513–1518.
- Kutlu, S.S., Sacar, S., Cevahir, N., and Turgut, H. 2008. Communityacquired *Streptococcus mitis* meningitis: A case report. *Int. J. Infect. Dis.* 12, e107–e109.
- Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., et al. 2012. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18. Erratum in: Gigascience 2015. 4, 30.
- Mitchell, J. 2011. Streptococcus mitis: Walking the line between commensalism and pathogenesis. Mol. Oral. Microbiol. 26, 89– 98.
- Otto, T.D., Sanders, M., Berriman, M., and Newbold, C. 2010. Iterative correction of reference nucleotides (iCORN) using second generation sequencing technology. *Bioinformatics* 26, 1704–1707.
- Park, S.N., Lim, Y.K., and Kook, J.K. 2013. Development of quantitative real-time PCR primers for detecting 42 oral bacterial species. *Arch. Microbiol.* 195, 473–482.