DOI QR코드

DOI QR Code

Biosynthesis of polyhydroxyalkanoate by mixed microbial cultures from hydrolysate of waste activated sludge

혼합미생물배양체를 이용한 폐활성슬러지 가용화 산물로부터 polyhydroxyalkanoate 생합성

  • Park, Taejun (Department of Microbiology and Molecular Biology, Chungnam National University) ;
  • Yoo, Young Jae (Department of Microbiology and Molecular Biology, Chungnam National University) ;
  • Jung, Dong Hoon (Department of Microbiology and Molecular Biology, Chungnam National University) ;
  • Lee, Sun Hee (Department of Microbiology and Molecular Biology, Chungnam National University) ;
  • Rhee, Young Ha (Department of Microbiology and Molecular Biology, Chungnam National University)
  • 박태준 (충남대학교 미생물.분자생명과학과) ;
  • 유영재 (충남대학교 미생물.분자생명과학과) ;
  • 정동훈 (충남대학교 미생물.분자생명과학과) ;
  • 이선희 (충남대학교 미생물.분자생명과학과) ;
  • 이영하 (충남대학교 미생물.분자생명과학과)
  • Received : 2017.08.09
  • Accepted : 2017.08.30
  • Published : 2017.09.30

Abstract

A new approach to the solubilization of waste activated sludge (WAS) using alginate-quaternary ammonium complex beads was investigated under controlled mild alkaline conditions. The complex beads were prepared by the reaction of sodium alginate (SA) with 3-(trimethoxysilyl)propyl-octadecyldimethylammonium chloride (TSA) in acid solution, followed by crosslinking with $CaCl_2$. Treatment of WAS with SA-TSA complex beads was effective for enhancing the efficacy of WAS solubilization. The highest value of soluble chemical oxygen demand (SCOD) concentration (3,900 mg/L) was achieved after 10 days of treatment with 30% (v/v) SA-TSA complex beads. The WAS solubilization efficacy of the complex beads was also evaluated by estimating the concentrations of volatile fatty acids (VFAs). The maximum value of VFAs was 2,961 mg/L, and the overall proportions of VFAs were more than 75% of SCOD. The main components of VFAs were acetic, propionic, iso-butyric, and butyric acids. These results suggest that SA-TSA complex beads might be useful for enhancing the solubilization of WAS. The potential use of VFAs as the external carbon substrate for the production of polyhydroxyalkanoate (PHA) by a mixed microbial culture (MMC) was also examined. The enrichment of PHA-accumulating MMC could be achieved by periodic feeding of VFAs generated from WAS in a sequencing batch reactor. The composition of PHA synthesized from VFAs mainly consisted of 3-hydroxybutyrate. The maximum PHA content accounted for 25.9% of dry cell weight. PHA production by this process is considered to be promising since it has a doubly beneficial effect on the environment by reducing the amount of WAS and concomitantly producing an eco-friendly biopolymer.

SA-TSA 복합구를 이용해 폐활성슬러지로부터 VFAs를 생산하고, 이를 발효 기질로 이용해 PHA를 생산하기 위한 실험을 수행하였다. 30%의 SA-TSA 복합구를 처리하였을 때 폐활성슬러지의 가용화 효율이 가장 효과적으로 일어나서 약 3,900 mg/L의 SCOD값을 얻었으며, acetic acid, propionic acid, iso-butyric acid 및 butyric acid를 주성분으로 하는 2,961 mg/L 농도의 VFAs를 얻었다. VFAs를 외부탄소원으로 이용하는 SBR 공정을 통해 PHA를 생합성하는 미생물을 농화배양하는 실험을 수행하고 PCR-DGGE로 분석한 결과, 우점 미생물로 Vibrio spp.와 Corynebacterium glutamicum이 확인되었다. 폐활성슬러지로부터 얻은 VFAs를 탄소원으로 사용하여 농화된 혼합미생물배양체를 회분배양한 결과, 건체량의 25.9%에 달하는 PHB를 얻었다. 본 연구결과는 SA-TSA 복합구를 이용하여 폐활성슬러지로부터 VFAs를 얻음으로써 폐슬러지 감량화 효과를 얻고, 또 혼합미생물배양체를 이용하여 VFAs를 바이오폴리머로 전환함으로써 경제성을 확보할 수 있는 새로운 생물공정의 가능성을 보여준다.

Keywords

References

  1. Albuquerque, M.G.E., Martino, V., Pollet, E., Avérous, L., and Reis, M.A.M. 2011. Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties. J. Biotechnol. 151, 66-76. https://doi.org/10.1016/j.jbiotec.2010.10.070
  2. Amulya, K., Reddy, M.V., and Mohan, S.V. 2014. Acidogenic spent wash valorization through polyhydroxyalkanoate (PHA) synthesis coupled with fermentative biohydrogen production. Bioresour. Technol. 158, 336-342. https://doi.org/10.1016/j.biortech.2014.02.026
  3. Aydin, S., Shahi, A., Ozbayram, E.G., Ince, B., and Ince, O. 2015. Use of PCR-DGGE based molecular methods to assessment of microbial diversity during anaerobic treatment of antibiotic combinations. Bioresour. Technol. 192, 735-740. https://doi.org/10.1016/j.biortech.2015.05.086
  4. Castilho, L.R., Mitchell, D.A., and Freire, D.M.G. 2009. Production of polyhydroxyalkanoates (PHAs) from waste materials and byproducts by submerged and solid-state fermentation. Bioresour. Technol. 100, 5996-6009. https://doi.org/10.1016/j.biortech.2009.03.088
  5. Chakraborty, P., Gibbons, W., and Muthukumarappan, K. 2009. Conversion of volatile fatty acids into polyhydroxyalkanoate by Ralstonia eutropha. J. Appl. Microbiol. 106, 1996-2005. https://doi.org/10.1111/j.1365-2672.2009.04158.x
  6. Chanprateep, S. 2010. Current trends in biodegradable polyhydroxyalkanoates. J. Biosci. Bioeng. 110, 621-632. https://doi.org/10.1016/j.jbiosc.2010.07.014
  7. Chen, Y., Jiang, S., Yuan, H., Zhou, Q., and Gu, G. 2007. Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 41, 683-689. https://doi.org/10.1016/j.watres.2006.07.030
  8. Chen, H., Meng, H., Nie, Z., and Zhang, M. 2013. Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes. Bioresour. Technol. 128, 533-538. https://doi.org/10.1016/j.biortech.2012.10.121
  9. Chien, C.C., Chen, C.C., Choi, M.H., Kung, S.S., and Wei, Y.H. 2007. Production of poly-$\beta$-hydroxybutyrate (PHB) by Vibrio spp. isolated from marine environment. J. Biotechnol. 132, 259-263. https://doi.org/10.1016/j.jbiotec.2007.03.002
  10. Dias, J.M., Lemos, P.C., Serafim, L.S., Oliveira, C., Eiroa, M., Albuquerque M.G., Ramos, A.M., Oliveira, R., and Reis, M.A. 2006. Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol. Biosci. 6, 885-906. https://doi.org/10.1002/mabi.200600112
  11. Ferreiro, N. and Soto, M. 2003. Anaerobic hydrolysis of primary sludge: influence of sludge concentration and temperature. Water Sci. Technol. 47, 239-246. https://doi.org/10.2166/wst.2003.0652
  12. Jiang, Y., Chen, Y., and Zheng, X. 2009. Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process. Environ. Sci. Technol. 43, 7734-7741. https://doi.org/10.1021/es9014458
  13. Jie, W., Peng, Y., Ren, N., and Li, B. 2014. Volatile fatty acids (VFAs) accumulation and microbial community structure of excess sludge (ES) at different pHs. Bioresour. Technol. 152, 124-129. https://doi.org/10.1016/j.biortech.2013.11.011
  14. Jo, S.J., Maeda, M., Ooi, T., and Taguchi, S. 2006. Production system for biodegradable polyester polyhydroxybutyrate by Corynebacterium glutamicum. J. Biosci. Bioeng. 102, 233-236. https://doi.org/10.1263/jbb.102.233
  15. Kim, D.Y., Kim, H.W., Chung, M.G., and Rhee, Y.H. 2007a. Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J. Microbiol. 45, 87-97.
  16. Kim, Y.S., Kim, H.W., Lee, S.H., Shin, K.S., Hur, H.W., and Rhee, Y.H. 2007b. Preparation of alginate-quaternary ammonium complex beads and evaluation of their antimicrobial activity. Int. J. Biol. Macromol. 41, 36-41. https://doi.org/10.1016/j.ijbiomac.2006.12.004
  17. Kim, H.W., Kim, B.R., and Rhee, Y.H. 2010. Imparting durable antimicrobial properties to cotton fabrics using alginate-quaternary ammonium complex nanoparticles. Carbohydr. Polym. 79, 1057-1062. https://doi.org/10.1016/j.carbpol.2009.10.047
  18. Koller, M., Marsalek, L., de Sousa Dias, M.M., and Braunegg, G. 2017. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol. 37, 24-38. https://doi.org/10.1016/j.nbt.2016.05.001
  19. Lee, W.S., Chua, A.S.M., Yeoh, H.K., and Ngoh, G.C. 2014. A review of the production and applications of waste-derived volatile fatty acids. Chem. Eng. J. 235, 83-99. https://doi.org/10.1016/j.cej.2013.09.002
  20. Lee, S.H., Chung, C.W., Yu, Y.J., and Rhee, Y.H. 2009. Effect of alkaline protease-producing Exiguobacterium sp. YS1 inoculation on the solubilization and bacterial community of waste activated sludge. Bioresour. Technol. 100, 4597-4603. https://doi.org/10.1016/j.biortech.2009.04.056
  21. Lee, S.H., Kim, J.H., Mishra, D., Ni, Y.Y., and Rhee, Y.H. 2011. Production of medium-chain-length polyhydroxyalkanoates by activated sludge enriched under periodic feeding with nonanoic acid. Bioresour. Technol. 102, 6159-6166. https://doi.org/10.1016/j.biortech.2011.03.025
  22. Liu, H., Wang, J., Liu, X., Fu, B., Chen, J., and Yu, H.Q. 2012. Acidogenic fermentation of proteinaceous sewage sludge: effect of pH. Water Res. 46, 799-807. https://doi.org/10.1016/j.watres.2011.11.047
  23. Matsumoto, K.I., Kitagawa, K., Jo, S.J., Song, Y., and Taguchi, S. 2011. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Corynebacterium glutamicum using propionate as a precursor. J. Biotechnol. 152, 144-146. https://doi.org/10.1016/j.jbiotec.2010.07.031
  24. Mengmeng, C., Hong, C., Qingliang, Z., Shirley, S.N., and Jie, R. 2009. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Bioresour. Technol. 100, 1399-1405. https://doi.org/10.1016/j.biortech.2008.09.014
  25. Mohandas, S.P., Balan, L., Lekshmi, N., Cubelio, S.S., Philip, R., and Singh, I.S.B. 2017. Production and characterization of polyhydroxybutyrate from Vibrio harveyi MCCB 284 utilizing glycerol as carbon source. J. Appl. Microbiol. 122, 698-707. https://doi.org/10.1111/jam.13359
  26. Morgan-Sagastume, F. 2016. Characterization of open, mixed microbial cultures for polyhydroxyalkanoate (PHA) production. Rev. Environ. Sci. Biotechnol. 15, 593-625. https://doi.org/10.1007/s11157-016-9411-0
  27. Morgan-Sagastume, F., Pratt, S., Karlsson, A., Cirne, D., Lant, P., and Werker, A. 2011. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants. Bioresour. Technol. 102, 3089-3097. https://doi.org/10.1016/j.biortech.2010.10.054
  28. Muyzer, G., De Waal, E.C., and Uitterlinden, A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700.
  29. Salehizadeh, H. and Van Loosdrecht, M.C.M. 2004. Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol. Adv. 22, 261-279. https://doi.org/10.1016/j.biotechadv.2003.09.003
  30. Serafim, L.S., Lemos, P.C., Albuquerque, M.G., and Reis, M.A. 2008. Strategies for PHA production by mixed cultures and renewable waste materials. Appl. Microbiol. Biotechnol. 81, 615-628. https://doi.org/10.1007/s00253-008-1757-y
  31. Villano, M., Beccari, M., Dionisi, D., Lampis, S., Miccheli, A., Vallini, G., and Majone, M. 2010. Effect of pH on the production of bacterial polyhydroxyalkanoates by mixed cultures enriched under periodic feeding. Process Biochem. 45, 714-723. https://doi.org/10.1016/j.procbio.2010.01.008
  32. Virov, P.I.O. 2013. Polyhydroxyalkanoates: Biodegradable polymers and plastics from renewable resources. Mater. Tehnol. 47, 5-12.
  33. Vlyssides, A.G. and Karlis, P.K. 2004. Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion. Bioresour. Technol. 91, 201-206. https://doi.org/10.1016/S0960-8524(03)00176-7
  34. Wang, Y., Yin, J., and Chen G.Q. 2014. Polyhydroxyalkanoates, challenges and opportunities. Curr. Opin. Biotechnol. 30, 59-65. https://doi.org/10.1016/j.copbio.2014.06.001
  35. Wei, Y.H., Chen, W.C., Wu, H.S., and Janarthanan, O.M. 2011. Biodegradable and biocompatible biomaterial, polyhydroxybutyrate, produced by an indigenous Vibrio sp. BM-1 isolated from marine environment. Mar. Drugs 9, 615-624. https://doi.org/10.3390/md9040615
  36. Yan, Y.Y., Feng, L.Y., Zhang, C.J., Wisniewski, C., and Zhou, Q. 2010. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10. Water Res. 44, 3329-3336. https://doi.org/10.1016/j.watres.2010.03.015
  37. Yuan, Q., Sparling, R., and Oleszkiewicz, J.A. 2011. VFA generation from waste activated sludge: Effect of temperature and mixing. Chemosphere 82, 603-607. https://doi.org/10.1016/j.chemosphere.2010.10.084