DOI QR코드

DOI QR Code

Functional evaluation of sourdough containing lactic acid bacteria isolated from sliced radish kimchi

깍두기로부터 분리된 유산균으로 제조한 사워도우의 기능성 평가

  • Lim, Eun-Seo (Department of Food Science & Nutrition, Tongmyong University) ;
  • Kim, Young-Mog (Division of Food Science and Biotechnology, Pukyong National University) ;
  • Lee, Eun-Woo (Department of Life Science and Biotechnology, Dongeui University)
  • Received : 2017.06.07
  • Accepted : 2017.06.30
  • Published : 2017.09.30

Abstract

The purpose of this study is to investigate the antioxidative and antimicrobial activities of sourdough fermented with the lactic acid bacteria (LAB) isolated from sliced radish kimchi. According to 16S rRNA gene sequence analysis, the isolated lactic acid bacteria were categorized as Leuconostoc dextranicum SRK03, Lactobacillus brevis SRK15, Pediococcus halophilus SRK22, Lactobacillus acidophilus SRK30, Lactobacillus plantarum SRK38, Leuconostoc citreum SRK 42, and Lactobacillus delbrueckii SRK60 with sequence similarity of 99%. After fermentation with L. dextranicum SRK03, L. acidophilus SRK30, L. plantarum SRK38 or L. delbrueckii SRK60 and Saccharomyces cerevisiae KCTC 7246 at $30^{\circ}C$ for 24 h LAB and yeast in sourdough were present at levels of $10^9$ and $10^7CFU/g$, respectively. In particular, the titratable acidity and ethanol and exopolysaccharide contents of sourdough fermented with L. dextranicum SRK03 were also significantly (P < 0.05) higher than those of sourdough fermented with L. acidophilus SRK30, L. plantarum SRK38, or L. delbrueckii SRK60. The sourdough fermented with L. dextranicum SRK03 and L. acidophilus SRK30 showed not only good DPPH radical-scavenging capacity but anti-lipid peroxidation activity. In addition, the viable counts of Bacillus cereus ATCC 11778 and Staphylococcus aureus ATCC 6538 in sourdough during storage for 5 days at $25^{\circ}C$ were significantly (P < 0.05) lower than those of pathogenic bacteria in the control group due to the organic acids and bacteriocin produced by L. acidophilus SRK30 strain.

본 연구에서는 깍두기로부터 분리한 유산균으로 발효시킨 사워도우의 항산화 및 항균 활성을 조사하였다. 염기서열 분석을 통해 분리 균주는 99%의 상동성을 가진 Leuconostoc dextranicum SRK03, Lactobacillus brevis SRK15, Pediococcus halophilus SRK22, Lactobacillus acidophilus SRK30, Lactobacillus plantarum SRK38, Leuconostoc citreum SRK 42 및 Lactobacillus delbrueckii SRK60으로 동정되었다. L. dextranicum SRK03, L. acidophilus SRK30, L. plantarum SRK38 혹은 L. delbreckii SRK60과 Saccharomyces cerevisiae KCTC 7246을 혼합하여 $30^{\circ}C$에서 24시간 발효시킨 사워도우의 유산균과 효모수는 각각 $10^9$$10^7CFU/g$이었으며, 특히 L. dextranicum SRK03으로 제조한 사워도우는 L. acidophilus SRK30, L. plantarum SRK38 및 L. delbreckii SRK60 보다 유의하게 높은 총 산도와 에탄올 및 세포 외 다당류 함량을 나타내었다. L. dextranicum SRK03 및 L. acidophilus SRK30으로 제조한 사워도우는 DPPH 라디칼 소거능과 유지의 과산화 억제능도 높았다. 게다가 L. acidophilus SRK30이 생산한 유기산과 박테리오신에 의해 $25^{\circ}C$에서 5일간 저장하는 동안 사워도우 내 Bacillus cereus ATCC 11778과 Staphylococcus aureus ATCC 6538의 균수는 유의하게 낮은 수준을 유지되었다.

Keywords

References

  1. Afify, A.E.M., Romeilah, R.M., Sultan, S.I.M., and Hussein, M.M. 2012. Antioxidant activity and biological evaluations of probiotic bacteria strains. Int. J. Acad. Res. 4, 131-139. https://doi.org/10.7813/2075-4124.2012/4-5/B.18
  2. Alfonzo, A., Ventimiglia, G., Corona, O., Di Gerlando, R., Gaglio, R., Francesca, N., Moschetti, G., and Settanni, L. 2013. Diversity and technological potential of lactic acid bacteria of wheat flours. Food Microbiol. 36, 343-354. https://doi.org/10.1016/j.fm.2013.07.003
  3. Ali, A.A. 2010. Beneficial role of lactic acid bacteria in food preservation and human health: A review. Res. J. Microbiol. 5, 1213-1221. https://doi.org/10.3923/jm.2010.1213.1221
  4. Arendt, E.K., Ryan, L.A.M., and Bello, D.F. 2007. Impact of sourdough on the texture of bread. Food Microbiol. 24, 165-174. https://doi.org/10.1016/j.fm.2006.07.011
  5. Banu, I., Vasilean, I., and Aprodu, I. 2010. Effect of lactic acid fermentation on antioxidant capacity of rye sourdough and bread. Food Sci. Technol. Res. 6, 571-576.
  6. Banu, I., Vasilean, I., and Aprodu, I. 2012. Quality evaluation of the sourdough rye breads. AUDJG-Food Technol. 35, 94-105.
  7. Caplice, E. and Fitzgerald, C.F. 1999. Food fermentations: role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50, 131-149. https://doi.org/10.1016/S0168-1605(99)00082-3
  8. Chavan, R.S. and Chavan, S.R. 2011. Sourdough technology-A traditional way for wholesome foods: a review. Com. Rev. Food Sci. Food Safety 10, 170-183.
  9. Cheigh, H.S. and Park, K.Y. 1994. Biochemical, microbiological, and nutritional aspects of kimchi. Crit. Rev. Food Sci. Nutr. 34, 175-203. https://doi.org/10.1080/10408399409527656
  10. Choi, H.C., Kim, Y.W., Hwang, I.Y., Kim, J.H., and Yoon, S. 2012. Evaluation of Leuconostoc citreum HO12 and Weissella koreensis HO20 isolated from kimchi as a starter culture for whole wheat sourdough. Food Chem. 134, 2208-2216. https://doi.org/10.1016/j.foodchem.2012.04.047
  11. Church, F.C., Swaisgood, H.E., Porter, D.H., and Catignani, G.L. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 66, 1219-1227. https://doi.org/10.3168/jds.S0022-0302(83)81926-2
  12. Coda, R., Rizzello, C.G., Pinto, D., and Gobbetti, M. 2012. Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours. Appl. Environ. Microbiol. 78, 1087-1096. https://doi.org/10.1128/AEM.06837-11
  13. Corsetti, A. and Settanni, L. 2007. Lactobacilli in sourdough fermentation. Food Res. Int. 40, 539-558. https://doi.org/10.1016/j.foodres.2006.11.001
  14. Corsetti, A., Settanni, L., and Van Sinderen, D. 2004. Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J. Appl. Microbiol. 96, 521-534. https://doi.org/10.1111/j.1365-2672.2004.02171.x
  15. De Vuyst, L. and Neysens, P. 2005. The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci. Technol. 16, 43-56. https://doi.org/10.1016/j.tifs.2004.02.012
  16. Gerekova, P., Kockova, M., Hybenova, E., Brindzova, L., Jurikova, N., and Valik, L. 2011. Interactions between lactobacilli and yeasts and their impact on sourdough properties. Proceeding of the 6th International Congress Flour-Bread '11. 8th Croatian Congress of Cereal Technologists, Opatija, Croatia, 12-14 October.
  17. Girotti, A.W. 1998. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 39, 1529-1542.
  18. Gjorgievski, N., Tomovska, J., Dimitrovska, G., Makarijoski, B., and Shartiati, M.A. 2014. Determination of the antioxidant activity in yogurt. J. Hy. Eng. Design 12, 88-92.
  19. Gobbetti, M. 1998. The sourdough microflora: Interactions of lactic acid bacteria and yeasts. Trends Food Sci. Technol. 9, 267-274. https://doi.org/10.1016/S0924-2244(98)00053-3
  20. Gobbetti, M., Simonetti, M.S., Corsetti, A., Santinelli, F., Rossi, J., and Damiani, P. 1995. Volatile compound and organic acid productions by mixed wheat sour dough starters: influence of fermentation parameters and dynamics during baking. Food Microbiol. 12, 497-507. https://doi.org/10.1016/S0740-0020(95)80134-0
  21. Hole, H., Nilssen, O., and Nes, I.F. 1991. Lactococcin A, a new bacteriocin from Lactococccus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol. 173, 3879-3887. https://doi.org/10.1128/jb.173.12.3879-3887.1991
  22. Karrar, E.M.A. 2014. A review on: Antioxidant and its impact during the bread making process. Int. J. Nutr. Food Sci. 3, 592-596. https://doi.org/10.11648/j.ijnfs.20140306.26
  23. Katina, K., Sauri, M., Alakomi, H.L., and Mattila-Sandholm, T. 2002. Potential of lactic acid bacteria to inhibit rope spoilage in wheat sourdough bread. LWT-Food Sci. Technol. 35, 38-45. https://doi.org/10.1006/fstl.2001.0808
  24. Kockova, M., Gerekova, P., Petrulakova, Z., Hybenova, E., Sturdik, E., and ValiK, L. 2011. Evaluation of fermentation properties of lactic acid bacteria isolated from sourdough. Acta. Chimica Slovaca. 4, 78-87.
  25. Leroy, F. and De Vuyst, L. 2004. Functional lactic bacteria starter cultures for the food fermentation industry. Trend Food Sci. Technol. 15, 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
  26. Mentes, O., Ercan, R., and Akcelik, M. 2007. Inhibitor activities of two Lactobacillus strains, isolated from sourdough, against ropeforming Bacillus strains. Food Cont. 18, 359-363. https://doi.org/10.1016/j.foodcont.2005.10.020
  27. Messens, W. and De Vuyst, L. 2002. Inhibitory substances produced by Lactobacilli isolated from sourdoughs- a review. Int. J. Food Microbiol. 72, 31-43. https://doi.org/10.1016/S0168-1605(01)00611-0
  28. Mishra, V., Shah, C., Mokashe, N., Chavan, R., Yadav, H., and Prajapati, J. 2015. Probiotics as potential antioxidants: a systematic review. J. Agric. Food Chem. 63, 3615-3626. https://doi.org/10.1021/jf506326t
  29. Modler, H.W. 1994. Bifidogenic factors-sources, metabolism and applications. Int. Dairy J. 4, 383-407. https://doi.org/10.1016/0958-6946(94)90055-8
  30. Nisa, Z.U., Rehman, S.U., Huma, N., and Shahid, M. 2016. Impact of mixed lactic acid bacterial (LAB) culture on flavoring profile and quality attributes of spring wheat sourdough bread. Pak. J. Agri. Sci. 53, 225-231.
  31. Paramithiotis, S., Chouliaras, Y., Tsakalidou, E., and Kalantzopoulos, G. 2005. Application of selected starter cultures for the production of wheat sourdough bread using a traditional three-stage procedure. Process Biochem. 40, 2813-2819. https://doi.org/10.1016/j.procbio.2004.12.021
  32. Patel, A.K., Michaud, P., Singhania, R.R., Soccol, C.R., and Pandey, A. 2010. Polysaccharides from probiotics: new developments as food additives. Food Technol. Biotechnol. 48, 451-463.
  33. Petrulakova, Z., Hybenova, E., Gerekova, P., Kockova, M., and Sturdik, E. 2009. Lactobacilli as natural bread preservatives. Proceeding of the 5th International Congress Flour-Bread '09. 7th Croatian Congress of Cereal Technologists, Opatija, Croatia, 21-23 October.
  34. Polak-Berecka, M., Wasko, A., Szwajgier, D., and Choma, A. 2013. Bifidogenic and antioxidant activity of exopolysaccharides produced by Lactobacillus rhamnosus E/N cultivated on different carbon sources. Polish J. Micorbiol. 62, 161-189.
  35. Robert, H., Gabriel, V., Lefebvre, D., Rabier, P., Tayssier, Y., and Foutagre-Faucher, C. 2006. Study of the behavior of Lactobacillus plantarum and Leuconostoc starters during a complete wheat sourdough breadmaking process. LWT-Food Sci. Technol. 39, 256-265. https://doi.org/10.1016/j.lwt.2005.01.013
  36. Rosenquist, H. and Hansen, A. 1998. The antimicrobial effect of organic acids, sourdough and nisin against Bacillus subtilis and B. licheniformis isolated form wheat bread. J. Appl. Microbiol. 85, 621-623. https://doi.org/10.1046/j.1365-2672.1998.853540.x
  37. Saeed, M., Yasmin, I., Khan, M.I., Pasha, I., Khan, M.R., Shabbir, A., and Khan, W.A. 2014. Lactic acid bacteria in sourdough fermentation; a safe approach for food preservation. Pak. J. Food Sci. 24, 211-217.
  38. Sanalibaba, P. and Cakmak, G.A. 2016. Exopolysaccharides production by lactic acid bacteria. Appl. Microbiol. Open Access 2, 1-5.
  39. Scott, R. and Sullivan, W.C. 2008. Ecology of fermented foods. Res. Human Ecol. 15, 25-31.
  40. Settanni, L., Massitti, O., Van Sinderen, D., and Corsetti, A. 2005. In situ activity of a bacteriocin-producing Lactococcus lactis strain. Influence on the interactions between lactic acid bacteria during sourdough fermentation. J. Appl. Microbiol. 99, 670-681. https://doi.org/10.1111/j.1365-2672.2005.02647.x
  41. Thiele, C., Ganzle, G., and Vogel, R.F. 2002. Contribution of sourdough lactobacilli, yeast, and cereal enzymes to the generation of amino acids in dough relevant for bread flavor. Cereal Chem. 79, 45-51. https://doi.org/10.1094/CCHEM.2002.79.1.45
  42. Thompson, J.M., Dodd, C.E.R., and Waites, W.M. 1993. Spoilage of bread by Bacillus. Int. Biodeter. Biodegr. 32, 55-66. https://doi.org/10.1016/0964-8305(93)90039-5
  43. Valerio, F., De Bellis, P., Lonigro, S.L., Visconti, A., and Lavernicocca, P. 2008. Use of Lactobacillus plantarum fermentation products in breadmaking to prevent Bacillus subtilis ropy spoilage. Int. J. Food Microbiol. 122, 328-332. https://doi.org/10.1016/j.ijfoodmicro.2008.01.005
  44. Van Loo, J., Coussement, P., De Leenheer, L., Hoebregs, H., and Smits, G. 1995. On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit. Rev. Food Sci. Nutr. 35, 525-552. https://doi.org/10.1080/10408399509527714
  45. Ventimiglia, G., Alfonzo, A., Galluzzo, P., Corona, O., Francesca, N., Caracappa, S., Moschetti, G., and Settanni, L. 2015. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation. Food Microbiol. 51, 57-68. https://doi.org/10.1016/j.fm.2015.04.011
  46. Weckx, S., Van Der Meulen, R., Maes, D., Scheirlinck, I., Huys, G., Vandamme, P., and De Vuyst, L. 2010. Lactic acid bacteria community dynamics and metabolite production of rye sourdough fermentations share characteristics of wheat and spelt sourdough fermentations. Food Microbiol. 27, 1000-1008. https://doi.org/10.1016/j.fm.2010.06.005
  47. Zhang, L., Liu, C., Li, D., Zhao, Y., Zhang, X., Zeng, X., Yang, Z., and Li, S. 2013. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 54, 270-275. https://doi.org/10.1016/j.ijbiomac.2012.12.037
  48. Zhang, S., Su, L.L.Y., Li, H., Sun, Q., Liang, X., and Lv, J. 2011. Antioxidative activity of lactic acid bacteria in yogurt. Af. J. Microbiol. Res. 5, 5194-5201.