DOI QR코드

DOI QR Code

Identification of Lactobacillus spp. associated with nematodes in peach farm soil

복숭아 농장 토양에서 Nematodes와 연관된 Lactobacillus spp.의 분리 및 동정

  • Lee, Woo-Hyun (Division of Biological Science and Technology, College of Science and Technology, Yonsei University) ;
  • Choi, Jae Im (Division of Biological Science and Technology, College of Science and Technology, Yonsei University) ;
  • Lee, Jin Il (Division of Biological Science and Technology, College of Science and Technology, Yonsei University) ;
  • Lee, Won-Pyo (Division of Biological Science and Technology, College of Science and Technology, Yonsei University) ;
  • Yoon, Sung-Sik (Division of Biological Science and Technology, College of Science and Technology, Yonsei University)
  • 이우현 (연세대학교 생명과학기술학부) ;
  • 최재임 (연세대학교 생명과학기술학부) ;
  • 이진일 (연세대학교 생명과학기술학부) ;
  • 이원표 (연세대학교 생명과학기술학부) ;
  • 윤성식 (연세대학교 생명과학기술학부)
  • Received : 2017.05.16
  • Accepted : 2017.09.04
  • Published : 2017.09.30

Abstract

Strains D4 and D5 were isolated from peach-rotten soil during the peach harvest season. The isolates were identified based on morphological and biochemical characterization, and identification was determined by 16S rRNA gene sequencing. Results showed that D4 has high similarity to Lactobacillus plantarum ATCC $14917^T$ and Lactobacillus pentosus ATCC $8041^T$ at 99.05% and 98.98%, respectively. D5 was also similar to Lactobacillus pentosus ATCC $8041^T$ and Lactobacillus plantarum ATCC $14917^T$ at 98.71% and 98.64%, respectively. In contrast, isolates showed differences in carbohydrate utilization in comparison to Lactobacillus plantarum ATCC $14917^T$ and Lactobacillus pentosus ATCC $8041^T$. In view of this we performed VITEK MS matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis, multiplex PCR fingerprinting, and random amplified polymorphic DNA (RAPD)-PCR to further confirm the identification of D4 and D5. The results of these analyses showed that both strains were most similar to Lactobacillus plantarum.

복숭아 수확시기에 낙과한 토양에서 Lactobacillus sp. D4와 D5 균주를 분리하였다. 분리한 Lactobacillus sp. D4와 D5 균주를 동정하기 위하여 형태학적 동정, 생화학적 동정 및 16S rRNA 유전자서열 분석을 수행하였다. 16S rRNA 유전자서열 분석 결과 Lactobacillus sp. D4는 Lactobacillus plantarum subsp. plantarum ATCC $14917^T$과 Lactobacillus pentosus ATCC $40997^T$에 각각 99.05%, 98.98% 일치하였으며, Lactobacillus sp. D5는 Lactobacillus pentosus ATCC $40997^T$, Lactobacillus plantarum subsp. plantarum ATCC $14917^T$에 각각 98.71%, 98.64% 일치하였다. Lactobacillus sp. D4와 D5 균주는 당 이용성 비교에서 Lactobacillus plantarum ATCC $14917^T$과 Lactobacillus pentosus ATCC $8041^T$에 비교하여 다른 결과를 나타내었다. 정확한 동정을 위하여 VITEK MS matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) 분석, multiplex PCR, random amplified polymorphic DNA (RAPD)-PCR을 수행하였다. 이러한 결과에 근거하여 Lactobacillus sp. D4와 D5 균주는 Lactobacillus plantarum으로 동정되었다.

Keywords

References

  1. Akopyanz, N., Bukanov, N.O., Westblom, T.U., Kresovich, S., and Berg, D.E. 1992. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 20, 5137-5142. https://doi.org/10.1093/nar/20.19.5137
  2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Bilecen, K., Yaman, G., Ciftci, U., and Laleli, Y.R. 2015. Performances and reliability of Bruker Microflex LT and VITEK MS MALDI-TOF mass spectrometry systems for the identification of clinical microorganisms. Biomed. Res. Int. 2015, 516410.
  4. Bui, T.P.N., Kim, Y.J., In, J.G., and Yang, D.C. 2011. Lactobacillus koreensis sp. nov., isolated from the traditional Korean food kimchi. Int. J. Syst. Evol. Microbiol. 61, 772-776. https://doi.org/10.1099/ijs.0.021386-0
  5. Chen, Y.S., Yanagida, F., and Shinohara, T. 2005. Isolation and identification of lactic acid bacteria from soil using an enrichment procedure. Lett. Appl. Microbiol. 40, 195-200. https://doi.org/10.1111/j.1472-765X.2005.01653.x
  6. Choi, H.J., Cheigh, C.I., Kim, S.B., Lee, J.C., Lee, D.W., Choi, S.W., Park, J.M., and Pyun, Y.R. 2002. Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi. Int. J. Syst. Evol. Microbiol. 52, 507-511. https://doi.org/10.1099/00207713-52-2-507
  7. Choi, J.I., Yoon, K.H., Subbammal Kalichamy, S., Yoon, S.S., and Lee, J.I. 2016. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans. ISME J. 10, 558-567. https://doi.org/10.1038/ismej.2015.134
  8. Cirilli, M., Bassi, D., and Ciacciulli, A. 2016. Sugars in peach fruit: a breeding perspective. Hortic. Res. 3, 15067. https://doi.org/10.1038/hortres.2015.67
  9. Collins, M.D., Rodrigues, U., Ash, C., Aguirre, M., Farrow, J.A.E., Martinez-Murcia, A., Phillips, B.A., Williams, A.M., and Wallbanks, S. 1991. Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol. Lett. 77, 5-12. https://doi.org/10.1111/j.1574-6968.1991.tb04313.x
  10. Foster, A.G. 2013. Rapid identification of microbes in positive blood cultures by use of the vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system. J. Clin. Microbiol. 51, 3717-3719. https://doi.org/10.1128/JCM.01679-13
  11. Guarner, F. and Malagelada, J.R. 2003. Gut flora in health and disease. Lancet 361, 512-519. https://doi.org/10.1016/S0140-6736(03)12489-0
  12. Herrero, M., Mayo, B., Gonzalez, B., and Suarez, J. 1996. Evaluation of technologically important traits in lactic acid bacteria isolated from spontaneous fermentations. J. Appl. Bacteriol. 81, 565-570.
  13. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721. https://doi.org/10.1099/ijs.0.038075-0
  14. McClelland, R. 2001. Gram's stain: the key to microbiology. MLO Med. Lab. Obs. 33, 20-22, 25-28.
  15. Miyashita, M., Yukphan, P., Chaipitakchonlatarn, W., Malimas, T., Sugimoto, M., Yoshino, M., Kamakura, Y., Potacharoen, W., Tanasupawat, S., Tanaka, N., et al. 2015. Lactobacillus plajomi sp. nov. and Lactobacillus modestisalitolerans sp. nov., isolated from traditional fermented foods. Int. J. Syst. Evol. Microbiol. 65, 2485-2490. https://doi.org/10.1099/ijs.0.000290
  16. Oberg, C.J., Oberg, T.S., Culumber, M.D., Ortakci, F., Broadbent, J.R., and McMahon, D.J. 2016. Lactobacillus wasatchensis sp. nov., a non-starter lactic acid bacteria isolated from aged Cheddar cheese. Int. J. Syst. Evol. Microbiol. 66, 158-164. https://doi.org/10.1099/ijsem.0.000689
  17. Siezen, R.J., Tzeneva, V.A., Castioni, A., Wels, M., Phan, H.T., Rademaker, J.L., Starrenburg, M.J., Kleerebezem, M., Molenaar, D., and van Hylckama Vlieg, J.E. 2010. Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ. Microbiol. 12, 758-773. https://doi.org/10.1111/j.1462-2920.2009.02119.x
  18. Siezen, R.J. and van Hylckama Vlieg, J.E.T. 2011. Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microb. Cell. Fact. 10, S3. https://doi.org/10.1186/1475-2859-10-S1-S3
  19. Siezen, R.J. and Wilson, G. 2010. Probiotics genomics. Microb. Biotechnol. 3, 1-9. https://doi.org/10.1111/j.1751-7915.2009.00159.x
  20. Tabatabai, M.A. and Dick, W.A. 2002. Enzymes in soil. In Burns, R.G. and Dick, R.P. (eds.) Enzymes in the environment, pp. 567-596. Marcel Dekker, New York, USA.
  21. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  22. Tanganurat, W., Quinquis, B., Leelawatcharamas, V., and Bolotin, A. 2009. Genotypic and phenotypic characterization of Lactobacillus plantarum strains isolated from Thai fermented fruits and vegetables. J. Basic Microbiol. 49, 377-385. https://doi.org/10.1002/jobm.200800185
  23. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  24. Torriani, S., Clementi, F., Vancanneyt, M., Hoste, B., Dellaglio, F., and Kersters, K. 2001a. Differentiation of Lactobacillus plantarum, L. pentosus and L. paraplantarum species by RAPD-PCR and AFLP. Syst. Appl. Microbiol. 24, 554-560. https://doi.org/10.1078/0723-2020-00071
  25. Torriani, S., Felis, G.E., and Dellaglio, F. 2001b. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol. 67, 3450-3454. https://doi.org/10.1128/AEM.67.8.3450-3454.2001
  26. Trias, R., Baneras, L., Montesinos, E., and Badosa, E. 2008. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int. Microbiol. 11, 231-236.
  27. Van Reenen, C.A. and Dicks, L.M. 1996. Evaluation of numerical analysis of random amplified polymorphic DNA (RAPD)-PCR as a method to differentiate Lactobacillus plantarum and Lactobacillus pentosus. Curr. Microbiol. 32, 183-187. https://doi.org/10.1007/s002849900033
  28. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  29. Xu, H., Liu, W., Zhang, W., Yu, J., Song, Y., Menhe, B., Zhang, H., and Sun, Z. 2015. Use of multilocus sequence typing to infer genetic diversity and population structure of Lactobacillus plantarum isolates from different sources. BMC Microbiol. 15, 241. https://doi.org/10.1186/s12866-015-0584-4
  30. Zanoni, P., Farrow, J.A.E., Phillips, B.A., and Collins, M.D. 1987. Lactobacillus pentosus (Fred, Peterson, and Anderson) sp. nov., nom. rev. Int. J. Syst. Evol. Microbiol. 37, 339-341.