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ABSTRACT

This study investigates the factors that affect China’s 
air pollution using city-level panel data and spatial 
econometric models. We address three air pollutants 

(PM10, SO2, and NO2) present in 30 cities in China 
between 2004-2012 using global OLS and spatial 
models. To develop the spatial econometric analysis, 
we create a spatial weights matrix to define spatial 
patterns based on two neighborhood criteria-the 
queen contiguity and k nearest neighbors. The re-
sults show that the estimated coefficients are rela-
tively consistent across different spatial weight cri-
teria. The OLS models indicate that the effect of 
green spaces is statistically significant in decreasing 
the concentrations of all air pollutants. In the PM10 
and SO2 analyses, the OLS models find that the 
number of buses and population density are also 
positively related to a reduction in the concentration 
of air pollutants. In addition, an increase in the 
temperature and the presence of secondary indus-
tries increase SO2 and NO2 concentrations, respec-
tively. All spatial models capture a positive and sig-
nificant effect of green spaces on reducing the con-
centration of each air pollutant. Our results suggest 
that green spaces in cities should receive priority 
consideration in local planning aimed at sustainable 
development. Furthermore, policymakers need to be 
able to discern the differences among pollutants 
when establishing environmental policies.

Key words: Air pollution, China, City-level panel 
data, Green space, Spatial analysis

1. INTRODUCTION
Driven by the “reform and open-door” policy that 

was launched in 1978, China’s economic growth has 
been remarkable in the last decades. Industrial develop-

ment has led the exponential growth of China’s GDP. 
From 1960 to 2015, China’s urban population increased 
from 16% to 56%, and today more than 55% of the 
Chinese population lives in urban areas (Huang et al., 
2016; World Bank, 2016; Wu et al., 2014). The rapid 
urbanization is a driver of the economic development 
of the country; however, urbanization and economic 
growth have resulted in environmental deterioration, 
with urban air pollution emerging as one of China’s 
most pressing issues.

As a result of the domestic crisis and international 
pressure to reduce air pollution, the country has been 
trying to balance economic performance and environ-
mental sustainability. For example, the Chinese gover
nment has issued environmental laws and regulations 
and called for the establishment of a national air pollu-
tion monitoring system, the implementation of research 
and development, and investment in environmental in-
frastructures (Xu et al., 2013; Zhang and Wen, 2008; He 
et al., 2002; He et al., 2001). It has also implemented 
various measures to prepare for the Beijing Olympic 
Games held in 2008 (Wang et al., 2009; Chan and Yao, 
2008; Hao and Wang, 2005).

However, some scholars and policy makers have 
questioned the validity and effectiveness of China’s 
environmental policies. China’s megacities - Beijing, 
Shanghai, and Guangzhou - are still the world’s most 
polluted cities (Chan and Yao, 2008; He et al., 2002). 
Particle Matter 10 (PM10) has severely affected the 
capital city, Beijing, during 90% of the days between 
1999 and 2005 (Chan and Yao, 2008). Millions of peo-
ple in China are exposed to this environmental threat. 
Moreover, air pollution, as well as the PM10 and PM2.5 
originating from China, also affect Korea and Japan. 
In the attempt to find ways to effectively mitigate 
these issues, scholars have addressed the current state 
of air pollution in Chinese cities and its determinants 

(Wang and Hao, 2012; Wang et al., 2010; Chan and 
Yao, 2008; Shao et al., 2006; Hao and Wang, 2005; He 
et al., 2002). Previous studies indicate that urban air 
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pollution is strongly related to economic development 

(Hao and Wang, 2005; He et al., 2002). The main 
sources of China’s air pollution are the growing coal 
consumption, motor vehicle use, and changes in urban 
land use, particularly the reduction in the size of urban 
green areas.

Most previous studies were limited by their focus on 
representative big cities, such as Beijing and Shang-
hai. However, to understand the reality and causes of 
air pollution in China, we need to apply an in-depth 
analysis to various cities with different economic and 
environmental conditions. As the Chinese government 
advocates the “New Normal” policy, which considers 
the balance between the environment and economic 
growth for the next stage of the country’s economic 
development, effective ways to reduce pollution need 
to be investigated. To this end, addressing various cit-
ies with different economic and environmental back-
ground allows us to identify the factors that affect Chi-
na’s air pollution, and provides meaningful implica-
tions to achieve the so called “New Normal” in China.

Most previous studies regarded a city as an indepen-
dent point in a random distribution. However, the 
information obtained from administrative units, such 
as cities or provinces, consists of geo-referenced data 
with spatial autocorrelation. Furthermore, most envi-
ronmental pollution data are based on areas; however, 
traditional regression methods ignore the spatial depen-
dency within data. For instance, the traditional ordi-
nary least squares (OLS) model assumes independent 
and identically distributed error terms and may under-
estimate the parameters of interest in the presence of a 
significant spatial correlation within the data. There-
fore, to accurately assess the influence of all the vari-
ables, the spatial factors need to be considered.

In particular, for a vast country such as China, spatial 
analysis is more suitable than traditional approaches 
since the natural environment, lifestyle, and industrial 
structure vary across regions. The factors affecting 
regional air pollution may be different across cities, and 
these effects may be underestimated by global estima-
tion models that focus on the entire country. However, 
only a few studies consider the spatial characteristics of 
different regions in China to address the determinants 
of air pollution. In particular, only a few studies inves-
tigate the distribution or emission intensity of air pol-
lutants and their determinants using a spatial approach 

(Tang et al., 2016; Zhao et al., 2014; Chen, 2013).
In this study, we adopted spatial econometric models 

to exploit the potential for data and methodological 

improvements in the estimation of the determinants of 
China’s air pollution. We apply both global OLS fixed 
effects models and spatial fixed effects models to three 
air pollutants - PM10, sulfur dioxide (SO2), and nitro-
gen dioxide (NO2) - present in 30 Chinese cities (Fig. 
1)1.

We use pollution data from 2004 to 2012 since the 
Chinese government has adopted a new standard air 
quality index in 2013 (GB3095-2012) to address the 
development problems of urbanization (Ministry of 
Environmental Protection of the People’s Republic of 
China, 2016).

2. METHODOLOGY
This study addresses the determinants of air pollution 

in Chinese cities considering the spatial dependence 
among observations. To this end, we built a city-level 
panel dataset and estimated spatial econometric models.

The basic premise of spatial econometric models is 
positive spatial dependence, whereas conventional 
regression models assume that observations are inde-
pendent of each other. This assumption implies the 
lack of spatial relationship between observations from 
nearby locations. However, if observations are collect-
ed based on spatial scales (i.e., countries, administra-
tive regions, or postal districts), these observations 
tend to be spatially dependent. In other words, region-
level observations from a certain location have values 
analogous to those from neighboring areas (Fischer 
and Getis, 2009). In this regard, a conventional regres-
sion model, such as a global OLS model, may not be 
the best framework to apply to regional data samples. 
Therefore, we adopt a spatial approach that allows us 
to consider the dependence among spatial units.

We consider a simple pooled linear regression model 
with spatial effects:

yit = Xit β+μi +εit,	 (1)

where i represents cross-sectional spatial units and t 
represents the time of the observation. In addition, yit 
is a dependent variable at location i in year t, and Xit is 
1-by-k vector of independent variables; β denotes a 
matching k-by-1 vector of parameters that is fixed but 
unknown, and εit is the error term for location i in year 
t. When we consider the interaction effect between spa-
tial observations, the model has a spatially lagged de-
pendent variable and assumes that the observed depen-
dent variables are affected by neighboring variables:

1The 30 cities are Anhui, Beijing, Fujian, Gansu, Guangdong, Guangxizhuangzu, Guizhou, Hainan, Hebei, Heilongjiang, Henan, 
Hubei, Hunan, Jiangsu, Jiangxi, Jilin, Liaoning, Neimenggu, Ningxiahuizu, Qinghai, Shaanxi, Shandong, Shanghai, Shanxi, 
Sichuan, Tianjin, Xinjiang, Xizang, Yunnan, and Zhejiang.
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yit =δ∑ N
j = 1Wijyjt + Xitβ+μi +εit,	 (2)

where δ is the spatial autoregressive coefficient; thus, 
if δ= 0, the spatial panel model corresponds to a tradi-
tional panel model (Xiao et al., 2014). Wij is an n-by-n 
spatial weighted positive matrix that constrains the 
contiguity definition to determine whether a certain 
region is a neighbor to another region. In other words, 
this matrix represents the intensity of the relationship 
between cross-sectional units appearing in both rows 
and columns. Thus, contiguity relations that define the 
number of neighbors for region i can be selected based 
on the contiguity definition. There are various method-
ologies to define contiguity among spatial observa-
tions in matrix W; Wij = 1 means that regions i and j 
are directly adjoining, and Wij = 0 means that they are 
not (Xiao et al., 2014; Millo and Piras, 2012; Fischer 
and Getis, 2009)2.

This study adopts two neighborhood criteria - the 
queen contiguity and k nearest neighbor criterion - to 
assign weights to neighbors. The queen contiguity, like 
the queen piece in chess, regards polygons sharing 
boundary points as neighbors. Hence, matrix W con-
tains 0 for regions that are not adjoined to region i, and 
values 1/n for the n neighboring regions of region i. 
The k-nearest neighbor criterion calculates the dis-

tance between neighbors. Figs 2 and 3 show the rela-
tionships between polygons for the criteria of queen 
contiguity and three nearest neighbors, respectively, in 

2It is often believed that the influence of matrix W on the estimated results is considerable. Some scholars, such as LeSage and 
Pace (2009), however, disagree (Fischer and Getis, 2009).

Fig. 2. Relationships between polygons for the queen conti-
guity criterion in the 30 Chinese cities under analysis.

Fig. 1. 30 major cities in China used for the analyses in this study.
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the 30 cities analyzed in this study.
To develop a spatial econometric model, we create a 

spatial weights matrix to define the patterns in China’s 
panel dataset. This study utilizes fixed-effects for the 
maximum likelihood estimation of spatial panel mod-
els. The model reads as follows:

Pollutantsit = �β0 +β1 GRESPit +β2 BUSit +β3 RAINit 
+β4 TEMPit +β5 POPDENit 
+β6 INDUSit +εit,	 (3)

where Pollutantsit is the concentration of the air pol-
lutant (μg/m3)3 for PM10, SO2, or NO2 in province i in 
year t. β are the parameters to be estimated, GRESP is 
the proportion of green space in each urban area (%), 
and BUS denotes the number of buses per person (veh/
person). We consider two environmental factors, RAIN 

and TEMP, which indicate precipitation (mm) and 
temperature (ºC) in each city, respectively. Population 
density is also included as a variable, POPDEN (per-
sons/m2). INDUS is the ratio of secondary industries 

(resource extraction industries) to provincial gross 
regional product (GRP), and εit is the error term.

We build three spatial panel datasets including infor-
mation from 30 cities in China observed for nine years, 
from 2004 to 2012, for each pollutant - PM10, SO2, or 
NO2. Regarding the dependent variables, we adopt the 
Air Pollution Index (API), which reports the concen-
trations of each air pollutant, from the China Statistical 
Yearbooks on Environment (National Bureau of Statis-
tics of China, 2005-2014a). The independent variables 
that are expected to affect air pollution in China are 
collected from the China Statistical Yearbooks, the 
China City Statistical Yearbooks (National Bureau of 
Statistics of China, 2003-2015, 2005-2014b), and the 
China Agriculture Yearbooks (Editorial Board of China 
Agriculture Yearbook, 2005-2013). Table 1 shows the 
descriptive statistics and information for each variable 
used in this study. We employ the “splm” package in 
R, version 3.2.4 (Millo and Piras, 2012; Bivand et al., 
2008) for the analysis.

3. RESULTS AND DISCUSSION
Tables 2, 3, and 4 report the estimation results of the 

global OLS models and the spatial weight models for 
each pollutant, PM10, SO2, and NO2, respectively. The 
coefficients in the OLS models indicate larger impacts 
than in the spatial models. The results of the spatial 
weight models show that fewer factors influence air 
pollutants if spatial characteristics are considered. The 
estimated coefficients are relatively consistent across 
the two spatial weight criteria, queen contiguity and k 
nearest neighbors.

As shown in the first column of Tables 2 and 3, the 
Fig. 3. Relationships between polygons for the three nearest 
neighbors criterion in the 30 Chinese cities under analysis.

Table 1. Descriptive statistics of variables.

Variable Definition Unit Mean St. dev. Min. Max.

PM10 PM10 Concentration μg/m3 102.127   31.343 33.000   305.000
SO2 SO2 Concentration μg/m3   45.703   20.976   3.000   116.000
NO2 NO2 Concentration μg/m3   41.367   13.140 12.000     73.000
GRESP Ratio of green space in urban area %     2.240     4.093   0.052     19.605
BUS Number of buses per person veh./person     0.077     0.037   0.017       0.214
RAIN Precipitation in major cities mm 855.397 503.718 74.900 2628.200
TEMP Temperature in major cities ºC   14.147     5.056   4.300     25.400
POPDEN Population density persons/m2     0.593     0.419   0.015       2.259
INDUS Ratio of secondary industry to GRP %   44.570     7.944 22.320     60.130

3The unit “μg” is an abbreviation of microgram, which means one millionth (1/1,000,000) gram.
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non-spatial estimation of PM10 and SO2 concentrations 
deliver similar results. The OLS results in Table 2 indi-
cate that green spaces, the number of buses, and popu-
lation density have statistically positive and significant 

effects on reducing PM10 concentrations in the Chinese 
cities under analysis. The OLS results for SO2 concen-
trations (Table 3) show that green spaces, the number 
of buses, and population density are the factors that 

Table 2. Result: PM10.

Variable
OLS model

Spatial model

Queen contiguity k nearest neighbor (k = 3)

Coefficients Std. error Coefficients Std. error Coefficients Std. error

GRESP     -1.111·   0.596     -0.760   0.506     -0.812·   0.491
BUS -248.030*** 56.469 -129.660* 51.054 -129.550* 51.331
RAIN     -0.001   0.004        0.000   0.003        0.001   0.003
TEMP        1.340   1.197        0.520   1.204     -0.303   1.169
POPDEN   -35.486* 16.730      23.196 15.226      23.642 14.913
INDUS        0.266   0.288        0.375   0.251        0.379   0.238
rho - -        0.491***   0.064        0.486***   0.059
N 270 270 270
Adjusted R2 0.136 - -

Note: ‘·’, ‘*’, ‘**’, and ‘***’ represent the 10%, 5%, 1% and 0.1% significance levels, respectively.

Table 3. Result: SO2.

Variable
OLS model

Spatial model

Queen contiguity k nearest neighbor (k = 3)

Coefficients Std. error Coefficients Std. error Coefficients Std. error

GRESP     -2.054***   0.508   -1.112**   0.405   -1.517***   0.427
BUS -123.083* 48.092 -14.474 40.971      0.297 44.057
RAIN     -0.003   0.003   -0.004   0.003   -0.003   0.003
TEMP        2.392*   1.019      2.304*   0.977      2.503*   0.997
POPDEN   -47.245** 14.248 -26.056* 12.237 -19.916 12.851
INDUS     -0.065   0.245      0.046   0.200      0.034   0.208
rho - -      0.546***   0.060      0.415***   0.064
N 270 270 270
Adjusted R2 0.184 - -

Note: ‘·’, ‘*’, ‘**’, and ‘***’ represent the 10%, 5%, 1% and 0.1% significance levels, respectively.

Table 4. Result: NO2.

Variable
OLS model

Spatial model

Queen contiguity k nearest neighbor (k = 3)

Coefficients Std. error Coefficients Std. error Coefficients Std. error

GRESP -0.428·   0.243 -0.405·   0.225 -0.420·   0.225
BUS  10.996 22.982    9.705 21.658    9.607 21.592
RAIN    0.000   0.001    0.001   0.001    0.000   0.001
TEMP    0.544   0.487    0.450   0.471    0.505   0.463
POPDEN    0.609   6.809 -1.595   6.420 -0.140   6.387
INDUS    0.397***   0.117    0.401***   0.110    0.398***   0.109
rho - -    0.107   0.085    0.063   0.080
N 270 270 270
Adjusted R2 0.075 - -

Note: ‘·’, ‘*’, ‘**’, and ‘***’ represent the 10%, 5%, 1% and 0.1% significance levels, respectively.
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mitigate SO2 concentrations in cities, in line with the 
results for PM10 concentrations.

The values of the spatial autocorrelation coefficient 

(rho) indicate significant and positive spatial autocorre-
lation only in the PM10 and SO2 analyses. These results 
suggest that a city located near other highly polluted 
cities is expected to have higher levels of PM10 and 
SO2. Furthermore, a comparison between the signifi-
cant results in the OLS model estimation and the (lack 
of) significant results in the spatial model estimation - 

for example, the estimates on BUS for both PM10 and 
SO2

 - indicates a possible overestimation of the effects 
of green spaces on PM10 concentrations when we intro-
duce spatial effects in the analysis.

The results of the spatial models for PM10 concentra-
tions indicate that the number of buses and green spaces 
significantly reduce PM10 concentrations, and the results 
for SO2 suggest that green spaces have a positive effect 
on reducing SO2 concentrations, in line with the find-
ings of the OLS analysis. Furthermore, cities with high 
population density tend to have lower SO2 concentra-
tions according to the spatial models based on queen 
contiguity, whereas the number of buses does not seem 
to be a significant factor in reducing pollutant concen-
trations. Temperature is a significant factor in increas-
ing SO2 concentrations according to the results of both 
non-spatial and spatial model estimations.

Our estimation results on population density and 
temperature are in line with the regional characteristics 
of China. Stationary emission sources generate SO2 
concentrations. In particular, in China, many power 
plants are still using coal for generating electricity. 
Most power plants are located on the outskirts of a city, 
in line with the Urban and Regional Planning. Regard-
ing the influence of temperature on SO2 concentrations, 
the leading regions for industry development are con-
centrated in the north-eastern part of the country due 
to imbalanced regional development, while the annual 
temperature in the South of China is higher than in the 
north-eastern region. The estimation results show a 
negative and positive coefficient on population density 
and temperature, respectively.

The results for NO2 concentrations are reported in 
Table 4 and show that the statistically significant coef-
ficients are consistent in all the three models, both in 
the non-spatial and spatial estimations. Interestingly, 
the rho coefficient is not significant in the NO2-con-
centration model. We find no significant effects related 
to spatial autocorrelation in NO2 concentrations among 
Chinese cities. This suggests that NO2 concentrations 
have a low degree of spatial correlation in China in 
comparison with the concentrations of PM10 and SO2. 
In all models, we observe that the ratio of green spaces 
in urban areas significantly contributes to decreasing 

NO2 concentrations, alongside other pollutants. In 
contrast, the ratio of secondary industry, which repre-
sents the development of the manufacturing sector in 
cities, has a significant impact on NO2 concentrations 
in China. However, since this study focused on the use 
of public transportation, these results cannot be gener-
alized to the whole transportation industry.

Our results provide several important implications 
for reducing air pollution in China. First, the results of 
our analysis highlight the importance of green spaces 
for reducing air pollutant concentrations, in line with 
the findings of previous studies (Makhelouf, 2009; Jim 
and Chen, 2008). Both non-spatial and spatial analyses 
for PM10, SO2, and NO2 emissions (all model specifi-
cations) find a significant and positive effect of green 
spaces on reducing pollutant concentrations. This sug-
gests that efforts to create and improve green spaces in 
cities may effectively improve air quality in Chinese 
towns. Hence, green spaces in cities should receive 
priority consideration in local planning aiming at sus-
tainable development.

Second, the empirical evidence from spatial analysis 
shows that the determinants for each air pollutant are 
different and may be affected by spatial variations. 
However, most emission reduction strategies usually 
focus on general factors, such as reducing vehicle emis-
sions (Wolff and Perry, 2010; Krzyzanowski et al., 
2005), in line with previous studies, which identified 
vehicle emissions as the primary source of these emis-
sions (Tiwari et al., 2012; Ostro et al., 2011; Holman, 
1999). In this respect, this study suggests the impor-
tance of discerning among pollutants and regions when 
establishing environmental policies. Policy makers 
should consider regional characteristics and spatial vari-
ations among pollutants based on the empirical results, 
which revealed a significant spatial correlation among 
the variables of interest.

Finally, this study finds that different factors are 
related to the sources of PM10, SO2, and NO2 concen-
trations in Chinese cities. The secondary industry ratio 
is a significant factor in increasing NO2 concentrations, 
whereas public transportation mitigates PM10 concen-
trations. Thus, environmental policies controlling sec-
ondary industries, which include oil and gas extraction 
and mining, and encouraging citizens to use public 
transportation are likely to be effective in mitigating 
NO2 and PM10 concentration, respectively.

4. CONCLUSION
To investigate the factors that affect China’s air pol-

lution, this study applies global OLS and spatial models 
to three air pollutants - PM10, SO2, and NO2

 - using a 
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city-level panel dataset for 30 Chinese cities observed 
between 2004 and 2012. The empirical results provide 
important implications for mitigating air pollution in 
Chinese cities. All the spatial models applied in this 
study show a positive and significant effect of green 
spaces on reducing pollutant concentrations. The results 
indicate that the impact of green spaces is significant in 
reducing the concentration of all pollutants considered 
in this study; thus, efforts to create and improve urban 
green spaces will significantly contribute to improve 
air quality in Chinese towns. Moreover, environmental 
policies should consider spatial variations: this study 
finds a significant and positive spatial autocorrelation 
in the spatial models of PM10 and SO2. Different deter-
minants for each air pollutant have a major impact on 
the effective reduction of air pollution.

Even though this study can offer meaningful insights 
into how to achieve a balanced economic growth in 
various regions, it suffers some limitations. We address 
only a small number of air pollutants - PM10, SO2, and 
NO2

 - observed for a limited period (nine years). Fur-
ther empirical analyses are required to identify other 
factors affecting air pollution in China and the poten-
tial differences among air pollutants. We believe that 
further studies can investigate these aspects by improv-
ing the dataset. Studies focusing on other types of pol-
lution, such as water pollution or industrial waste, 
would also be helpful to capture the current state of 
pollution and contribute to effective environmental 
policies.
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