DOI QR코드

DOI QR Code

Review on Electronic Correlations and the Metal-Insulator Transition in SrRuO3

  • Pang, Subeen (Department of Materials Science and Engineering, College of Engineering, Seoul National University)
  • Received : 2017.08.10
  • Accepted : 2017.09.18
  • Published : 2017.09.30

Abstract

The classical electron band theory is a powerful tool to describe the electronic structures of solids. However, the band theory and corresponding density functional theory become inappropriate if a system comprises localized electrons in a scenario wherein strong electron correlations cannot be neglected. $SrRuO_3$ is one such system, and the partially localized d-band electrons exhibit some interesting behaviors such as enhanced effective mass, spectral incoherency, and oppression of ferromagnetism and itinerancy. In particular, a Metal-Insulator transition occurs when the thickness of $SrRuO_3$ approaches approximately four unit cells. In the computational studies, irrespective of the inclusion of on-site Hubbard repulsion and Hund's coupling parameters, correctly depicting the correlation effects is difficult. Because the oxygen atoms and the symmetry of octahedra are known to play important roles in the system, scrutinizing both the electronic band structure and the lattice system of $SrRuO_3$ is required to find the origin of the correlated behaviors. Transmission electron microscopy is a promising solution to this problem because of its integrated functionalities, which include atomic-resolution imaging and electron energy loss spectroscopy.

Keywords

References

  1. Ahn J S, Bak J, Choi H S, Noh T W, Han J E, Bang Y, Cho J H, and Jia Q X (1999) Spectral Evolution in (Ca, Sr)$RuO_3$ near the Mott-Hubbard Transition. Phys. Rev. Lett. 82, 5321-5324. https://doi.org/10.1103/PhysRevLett.82.5321
  2. Autieri C (2016) Antiferromagnetic and xy ferro-orbital order in insulating $SrRuO_3$ thin films with SrO termination. J. Phys.: Condens. Matter 28, 42.
  3. Bern F, Ziese M, Setzer A, Pippel E, Hesse D, and Vrejoiu I (2013) Structural, magnetic and electrical properties of $SrRuO_3$ films and $SrRuO_3$/$SrTiO_3$ superlattices. J. Phys.: Condens. Matter 25, 49.
  4. Chang S H, Chang Y J, Jang S Y, Jeong D W, Jung C U, Kim Y J, Chung J S, and Noh T W (2011) Thickness-dependent structural phase transition of strained $SrRuO_3$ ultrathin films: the role of octahedral tilt. Phys. Rev. B 84, 10.
  5. Chang Y J, Kim C H, Phark S H, Kim Y S, Yu J, and Noh T W (2009) Fundamental thickness limit of itinerant ferromagnetic $SrRuO_3$ thin films. Phys. Rev. Lett. 103, 5.
  6. Chen H, Millis A J, and Marianetti C A (2013) Engineering correlation effects via artificially designed oxide superlattices. Phys. Rev. Lett. 111, 11.
  7. Choi K J, Baek S H, Jang H W, Belenky L J, Lyubchenko M, and Eom C B (2010) Phase-transition temperatures of strained single-crystal $SrRuO_3$ thin films. Adv. Mater. 22, 759-762. https://doi.org/10.1002/adma.200902355
  8. Cox P A, Egdell R G, Goodenough J B, Hamnett A, and Naish C C (1983) The metal-to-semiconductor transition in ternary ruthenium (IV) oxides: a study by electron spectroscopy. J. Phys. C: Solid State Phys. 16, 6221-6239. https://doi.org/10.1088/0022-3719/16/32/014
  9. Dang H T, Mravlje J, Georges A, and Millis A J (2015) Electronic correlations, magnetism, and Hund's rule coupling in the ruthenium perovskites $SrRuO_3$ and Ca$RuO_3$. Phys. Rev. B 91, 19.
  10. de Boer J H and Verwey E J (1937) Semi-conductors with partially and with completely filled 3d-lattice bands. Proc. Phys. Soc. 49, 59-71. https://doi.org/10.1088/0959-5309/49/4S/307
  11. de'Medici L, Hassan S R, Capone M, and Dai X (2009) Orbital-selective Mott transition out of band degeneracy lifting. Phys. Rev. Lett. 102, 12.
  12. Dodge J S, Weber C P, Corson J, Orenstein J, Schlesinger Z, Reiner J W, and Beasley M R (2000) Low-frequency crossover of the fractional power-law conductivity in $SrRuO_3$. Phys. Rev. Lett. 85, 4932-4935. https://doi.org/10.1103/PhysRevLett.85.4932
  13. Egerton R F (2011) Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer, New York).
  14. Etz C, Maznichenko I V, Bottcher D, Henk J, Yaresko A N, Hergert W, Mazin I I, Mertig I, and Ernst A (2012) Indications of weak electronic correlations in $SrRuO_3$ from first-principles calculations. Phys. Rev. B 86, 6.
  15. Ferrero M, Becca F, Fabrizio M, and Capone M (2005) Dynamical behavior across the Mott transition of two bands with different bandwidths. Phys. Rev. B 72, 20.
  16. Fujioka K, Okamoto J, Mizokawa T, Fujimori A, Hase I, Abbate M, Lin H J, Chen C T, Takeda Y, and Takano M (1997) Electronic structure of $SrRuO_3$. Phys. Rev. B 56, 6380-6383. https://doi.org/10.1103/PhysRevB.56.6380
  17. Georges A, de'Medici L, and Mravlje J (2013) Strong correlations from Hund's coupling. Annu. Rev. Condens. Matter Phys. 4, 137-178. https://doi.org/10.1146/annurev-conmatphys-020911-125045
  18. Gorelov E, Karolak M, Wehling T O, Lechermann F, Lichtenstein A I, and Pavarini E (2010) Nature of the Mott transition in $Ca_2RuO_4$. Phys. Rev. Lett. 104, 22.
  19. Grutter A, Wong F, Arenholz E, Liberati M, Vailionis A, and Suzuki Y (2010) Enhanced magnetism in epitaxial $SrRuO_3$ thin films. Appl. Phys. Lett. 96, 8.
  20. Gu M, Laverock J, Chen B, Smith K E, Wolf S A, and Lu J (2013) Metal-Insulator transition induced in $CaVO_3$ thin films. J. Appl. Phys. 113, 13.
  21. Gu M, Wang K, Wang Y, Xie Q, Cai H, Zhang G P, and Wu X (2016) Enhancement of orbital ordering and spin polarization by controlling the dimensionality of the octahedra network. NPJ Quant. Mater. 1, 16011. https://doi.org/10.1038/npjquantmats.2016.11
  22. Gu M, Xie Q, Shen X, Xie R, Wang J, Tang G, Wu D, Zhang G P, and Wu X S (2012) Magnetic ordering and structural phase transitions in a strained ultrathin $SrRuO_3$/$SrTiO_3$ superlattice. Phys. Rev. Lett. 109, 15.
  23. Gunnarsson O, Koch E, and Martin R M (1996) Mott transition in degenerate Hubbard models: application to doped fullerenes. Phys. Rev. B 54, R11026-R11029. https://doi.org/10.1103/PhysRevB.54.R11026
  24. Gupta K, Mandal B, and Mahadevan P (2014) Strain-induced Metal-Insulator transition in ultrathin films of $SrRuO_3$. Phys. Rev. B 90, 12.
  25. Han Q, Dang H T, and Millis A J (2016) Ferromagnetism and correlation strength in cubic barium ruthenate in comparison to strontium and calcium ruthenate: a dynamical mean-field study. Phys. Rev. B 93, 15.
  26. He J, Borisevich A, Kalinin S V, Pennycook S J, and Pantelides S T (2010) Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys. Rev. Lett. 105, 22.
  27. Hohenester U, Ditlbacher H, and Krenn J R (2009) Electron-energy-loss spectra of plasmonic nanoparticles. Phys. Rev. Lett. 103, 10.
  28. Imada M, Fujimori A, and Tokura Y (1998) Metal-Insulator transitions. Rev. Mod. Phys. 70, 1039-1263. https://doi.org/10.1103/RevModPhys.70.1039
  29. Ishigami K, Yoshimatsu K, Toyota D, Takizawa M, Yoshida T, Shibata G, Harano T, Takahashi Y, Kadono T, Verma V K, Singh V R, Takeda Y, Okane T, Saitoh Y, Yamagami H, Koide T, Oshima M, Kumigashira H, and Fujimori A (2015) Thickness-dependent magnetic properties and strain-induced orbital magnetic moment in $SrRuO_3$ thin films. Phys. Rev. B 92, 6.
  30. Jang H W, Felker D A, Bark C W, Wang Y, Niranjan M K, Nelson C T, Zhang Y, Su D, Folkman C M, Baek S H, Lee S, Janicka K, Zhu Y, Pan X Q, Fong D D, Tsymbal E Y, Rzchowski M S, and Eom C B (2011) Metallic and insulating oxide interfaces controlled by electronic correlations. Science 331, 886-889. https://doi.org/10.1126/science.1198781
  31. Jeng H T, Lin S H, and Hsue C S (2006) Orbital ordering and Jahn-Teller distortion in perovskite ruthenate $SrRuO_3$. Phys. Rev. Lett. 97, 6.
  32. Jeong D W, Choi H C, Kim C H, Chang S H, Sohn C H, Park H J, Kang T D, Cho D Y, Baek S H, Eom C B, Shim J H, Yu J, Kim K W, Moon S J, and Noh T W (2013) Temperature evolution of itinerant ferromagnetism in $SrRuO_3$ probed by optical spectroscopy. Phys. Rev. Lett. 110, 24.
  33. Kacedon D B, Rao R A, and Eom C B (1997) Magnetoresistance of epitaxial thin films of ferromagnetic metallic oxide $SrRuO_3$ with different domain structures. Appl. Phys. Lett. 71, 1724-1726. https://doi.org/10.1063/1.120016
  34. Kanbayasi A (1976) Magnetic properties of $SrRuO_3$ single crystal. J. Phys. Soc. Jpn. 41, 1876-1878. https://doi.org/10.1143/JPSJ.41.1876
  35. Kennedy B J and Hunter B A (1998) High-temperature phases of $SrRuO_3$. Phys. Rev. B 58, 653-658. https://doi.org/10.1103/PhysRevB.58.653
  36. Kostic P, Okada Y, Collins N C, Schlesinger Z, Reiner J W, Klein L, Kapitulnik A, Geballe T H, and Beasley M R (1998) Non-Fermi-liquid behavior of $SrRuO_3$: evidence from infrared conductivity. Phys. Rev. Lett. 81, 2498-2501. https://doi.org/10.1103/PhysRevLett.81.2498
  37. Kim B and Min B I (2014) Termination-dependent electronic and magnetic properties of ultrathin $SrRuO_3$ (111) films on $SrTiO_3$. Phys. Rev. B 89, 19.
  38. Kim H D, Noh H J, Kim K H, and Oh S J (2004) Core-level X-ray photoemission satellites in ruthenates: A new mechanism revealing the Mott transition. Phys. Rev. Lett. 93, 12.
  39. Kim J, Chung J, and Oh S J (2005a) In situ photoemission study on $SrRuO_3$ / $SrTiO_3$ films grown by pulsed laser deposition. Phys. Rev. B 71, 12.
  40. Kim K W, Lee J S, Noh T W, Lee S R, and Char K (2005b) Metal-Insulator transition in a disordered and correlated $SrTi_{1-x}Ru_xO_3$ system: changes in transport properties, optical spectra, and electronic structure. Phys. Rev. B 71, 12.
  41. Kim M and Min B I (2015) Nature of itinerant ferromagnetism of $SrRuO_3$: A DFT+DMFT study. Phys. Rev. B 91, 20.
  42. Kimber S A J, Rodgers J A, Wu H, Murray C A, Argyriou D N, Fitch A N, Khomskii D I, and Attfield J P (2009) Metal-Insulator transition and orbital order in Pb$RuO_3$. Phys. Rev. Lett. 102, 4.
  43. Koga A, Kawakami N, Rice T M, and Sigrist M (2004) Orbital-selective Mott transitions in the degenerate Hubbard model. Phys. Rev. Lett. 92, 21.
  44. Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C B, Blank D H A, and Beasley M R (2012) Structure, physical properties, and applications of $SrRuO_3$ thin films. Rev. Mod. Phys. 84, 253-298. https://doi.org/10.1103/RevModPhys.84.253
  45. Kotliar G and Vollhardt D (2004) Strongly correlated materials: insights from dynamical mean-field theory. Phys. Today 57, 53-60.
  46. Kumigashira H, Minohara M, Takizawa M, Fujimori A, Toyota D, Ohkubo I, Oshima M, Lippmaa M, and Kawasaki M (2008) Interfacial electronic structure of $SrTiO_3$$SrRuO_3$ heterojuctions studied by in situ photoemission spectroscopy. Appl. Phys. Lett. 92, 12.
  47. Lee J S, Lee Y S, Noh T W, Char K, Park J, Oh S J, Park J H, Eom C B, Takeda T, and Kanno R (2001) Optical investigation of the electronic structures of $Y_2Ru_2O_7$, Ca$RuO_3$, $SrRuO_3$, and $Bi_2Ru_2O_7$. Phys. Rev. B 64, 24.
  48. Liebsch A (2003a) Quasi-particle spectra of perovskites: enhanced Coulomb correlations at surfaces. Eur. Phys. J. B 32, 477-487. https://doi.org/10.1140/epjb/e2003-00122-7
  49. Liebsch A (2003b) Surface versus bulk Coulomb correlations in photoemission spectra of $SrVO_3$ and $CaVO_3$. Phys. Rev. Lett. 90, 9.
  50. Liebsch A, Ishida H, and Bihlmayer G (2005) Coulomb correlations and orbital polarization in the Metal-Insulator transition of $VO_2$. Phys. Rev. B 71, 8.
  51. Lin P A, Jeng H T, and Hsue C S (2008) Electronic structure and orbital ordering of $SrRu_{1−x}Ti_xO_3$: GGA+U investigations. Phys. Rev. B 77, 8.
  52. Liu Z Q, Ming Y, Lü W M, Huang Z, Wang X, Zhang B M, Feng Y P, Venkatesan T, and Ariando (2012) Tailoring the electronic properties of $SrRuO_3$ films in $SrRuO_3$/$LaAlO_3$ superlattices. Appl. Phys. Lett. 101, 22.
  53. Lu W, Song W D, He K, Chai J, Sun C J, Chow G M, and Chen J S (2013a) The role of octahedral tilting in the structural phase transition and magnetic anisotropy in $SrRuO_3$ thin film. J. Appl. Phys. 113, 6.
  54. Lu W, Yang P, Song W D, Chow G M, and Chen J S (2013b) Control of oxygen octahedral rotations and physical properties in $SrRuO_3$ films. Phys. Rev. B 88, 21.
  55. Mahadevan P, Aryasetiawan F, Janotti A, and Sasaki T (2009) Evolution of the electronic structure of a ferromagnetic metal: case of $SrRuO_3$. Phys. Rev. B 80, 3.
  56. Maiti K and Singh R S (2005) Evidence against strong correlation in 4d transition-metal oxides Ca$RuO_3$ and $SrRuO_3$. Phys. Rev. B 71, 16.
  57. Maiti K, Singh R S, and Medicherla V R R (2007a) Evolution of a band insulating phase from a correlated metallic phase. Phys. Rev. B 76, 16.
  58. Maiti K, Singh R S, and Medicherla V R R (2007b) Observation of particle hole asymmetry and phonon excitations in non-Fermi-liquid systems: a high-resolution photoemission study of ruthenates. Europhys. Lett. 78, 1.
  59. Mazin I I and Singh D J (1997) Electronic structure and magnetism in Rubased perovskites. Phys. Rev. B 56, 2556-2571. https://doi.org/10.1103/PhysRevB.56.2556
  60. Mott N (1990) On Metal-Insulator transitions. J. Solid State Chem. 88, 5-7. https://doi.org/10.1016/0022-4596(90)90201-8
  61. Okamoto J, Mizokawa T, Fujimori A, Hase I, Nohara M, Takagi H, Takeda Y, and Takano M (1999) Correlation effects in the electronic structure of $SrRuO_3$. Phys. Rev. B 60, 2281-2285. https://doi.org/10.1103/PhysRevB.60.2281
  62. Park J, Oh S J, Park J H, Kim D M, and Eom C B (2004) Electronic structure of epitaxial (Sr, Ca)$RuO_3$ films studied by photoemission and X-ray absorption spectroscopy. Phys. Rev. B 69, 8.
  63. Poteryaev A I, Ferrero M, Georges A, and Parcollet O (2008) Effect of crystal-field splitting and interband hybridization on the Metal-Insulator transitions of strongly correlated systems. Phys. Rev. B 78, 4.
  64. Poteryaev A I, Tomczak J M, Biermann S, Georges A, Lichtenstein A I, Rubtsov A N, Saha-Dasgupta T, and Andersen O K (2007) Enhanced crystal-field splitting and orbital-selective coherence induced by strong correlations in $V_2O_3$. Phys. Rev. B 76, 8.
  65. Rondinelli J M, Caffrey N M, Sanvito S, and Spaldin N A (2008) Electronic properties of bulk and thin film $SrRuO_3$: search for the Metal- Insulator transition. Phys. Rev. B 78, 15.
  66. Rozenberg M J, Kotliar G, and Kajueter H (1996) Transfer of spectral weight in spectroscopies of correlated electron systems. Phys. Rev. B 54, 8452-8468. https://doi.org/10.1103/PhysRevB.54.8452
  67. Ryee S, Jang S W, Kino H, Kotani T, and Han M J (2016) Quasiparticle self-consistent GW calculation of $Sr_2RuO_4$ and $SrRuO_3$. Phys. Rev. B 93, 7.
  68. Shai D E, Adamo C, Shen D W, Brooks C M, Harter J W, Monkman E J, Burganov B, Schlom D G, and Shen K M (2013) Quasiparticle mass enhancement and temperature dependence of the electronic structure of ferromagnetic $SrRuO_3$ thin films. Phys. Rev. Lett. 110, 8.
  69. Shen X, Qiu X, Su D, Zhou S, Li A, and Wu D (2015) Thickness-dependent Metal-Insulator transition in epitaxial $SrRuO_3$ ultrathin films. J. Appl. Phys. 117, 1.
  70. Si L, Zhong Z, Tomczak J M, and Held K (2015) Route to roomtemperature ferromagnetic ultrathin $SrRuO_3$ films. Phys. Rev. B 92, 4.
  71. Siemons W, Koster G, Vailionis A, Yamamoto H, Blank D H, and Beasley M R (2007) Dependence of the electronic structure of $SrRuO_3$ and its degree of correlation on cation off-stoichiometry. Phys. Rev. B 76, 7.
  72. Takizawa M, Toyota D, Wadati H, Chikamatsu A, Kumigashira H, Fujimori A, Oshima M, Fang Z, Lippmaa M, Kawasaki M, and Koinuma H (2005) Manifestation of correlation effects in the photoemission spectra of $Ca_{1−x}$ Srx $RuO_3$. Phys. Rev. B 72, 6.
  73. Tian W, Haeni J H, Schlom D G, Hutchinson E, Sheu B L, Rosario M M, Schiffer P, Liu Y, Zurbuchen M A, and Pan X Q (2007) Epitaxial growth and magnetic properties of the first five members of the layered $Sr_{n+1}$ $Ru_nO_{3n+1}$ oxide series. Appl. Phys. Lett. 90, 2.
  74. Tompkins H, and Irene E A (2005) Handbook of ellipsometry (William Andrew).
  75. Toyota D, Ohkubo I, Kumigashira H, Oshima M, Ohnishi T, Lippmaa M, Kawasaki M, and Koinuma H (2006) Ferromagnetism stabilization of ultrathin $SrRuO_3$ films: thickness-dependent physical properties. J. Appl. Phys. 99, 8.
  76. Toyota D, Ohkubo I, Kumigashira H, Oshima M, Ohnishi T, Lippmaa M, Takizawa M, Fujimori A, Ono K, Kawasaki M, and Koinuma H (2005) Thickness-dependent electronic structure of ultrathin $SrRuO_3$ films studied by in situ photoemission spectroscopy. Appl. Phys. Lett. 87, 16.
  77. Vailionis A, Siemons W, and Koster G (2008) Room temperature epitaxial stabilization of a tetragonal phase in A$RuO_3$ (A=Ca and Sr) thin films. Appl. Phys. Lett. 93, 5.
  78. Verissimo-Alves M, Garcia-Fernandez P, Bilc D I, Ghosez P, and Junquera J (2012) Highly confined spin-polarized two-dimensional electron gas in $SrTiO_3$/$SrRuO_3$ superlattices. Phys. Rev. Lett. 108, 10.
  79. Wang G T, Zhang M P, Yang Z X, and Fang Z (2009) Orbital orderings and optical conductivity of $SrRuO_3$ and Ca$RuO_3$: first-principles studies. J. Phys.: Condens. Matter 21, 26.
  80. Williams A J, Gillies A, Attfield J P, Heymann G, Huppertz H, Martinez-Lope M J, and Alonso J A (2006) Charge transfer and antiferromagnetic insulator phase in $SrRu_{1−x}Cr_xO_3$ perovskites: solid solutions between two itinerant electron oxides. Phys. Rev. B 73, 10.
  81. Woodward P M (1997) Octahedral tilting in perovskites. II. structure stabilizing forces. Acta Crystallogr. Sect. B: Struct. Sci. 53, 44-66. https://doi.org/10.1107/S0108768196012050
  82. Xia J, Siemons W, Koster G, Beasley M R, and Kapitulnik A (2009) Critical thickness for itinerant ferromagnetism in ultrathin films of $SrRuO_3$. Phys. Rev. B 79, 14.
  83. Yang H F, Fan C C, Liu Z T, Yao Q, Li M Y, Liu J S, Jiang M H, and Shen D W (2016) Comparative angle-resolved photoemission spectroscopy study of Ca$RuO_3$ and $SrRuO_3$ thin films: pronounced spectral weight transfer and possible precursor of lower Hubbard band. Phys. Rev. B 94, 11.
  84. Yang H F, Liu Z T, Fan C C, Yao Q, Xiang P, Zhang K L, Li M Y, Li H, Liu J S, Shen D W, and Jiang M H (2016) Origin of the kink in the band dispersion of the ferromagnetic perovskite $SrRuO_3$: electron-phonon coupling. Phys. Rev. B 93, 12.
  85. Yoo H K, Chang Y J, Moreschini L, Kim H D, Sohn C H, Sinn S, Oh J S, Kuo C T, Bostwick A, Rotenberg E, and Noh T W (2015) Insulating-layer formation of metallic LaNiO3 on Nb-doped $SrTiO_3$ substrate. Appl. Phys. Lett. 106, 12.
  86. Yoshimatsu K, Okabe T, Kumigashira H, Okamoto S, Aizaki S, Fujimori A, and Oshima M (2010) Dimensional-crossover-driven Metal-Insulator transition in $SrVO_3$ ultrathin films. Phys. Rev. Lett. 104, 14.
  87. Yoshimatsu K, Horiba K, Kumigashira H, Yoshida T, Fujimori A, and Oshima M (2011). Metallic quantum well states in artificial structures of strongly correlated oxide. Science 333, 319-322. https://doi.org/10.1126/science.1205771
  88. Zhong Z, Wallerberger M, Tomczak J M, Taranto C, Parragh N, Toschi A, Sangiovanni G, and Held K (2015) Electronics with correlated oxides: $SrVO_3$ /$SrTiO_3$ as a Mott transistor. Phys. Rev. Lett. 114, 24.
  89. Zhong Z, Zhang Q, and Held K (2013) Quantum confinement in perovskite oxide heterostructures: tight binding instead of a nearly free electron picture. Phys. Rev. B 88, 12.