참고문헌
- 강완.나귀수.백석윤.이경화(2013). 초등수학 교수 단위 사전. 서울: 경문사.
- 강흥규(2005). Dewey의 경험주의 수학교육론 연구. 서울대학교 대학원 박사학위 논문.
- 고정화(2010). 길이 어림과 관련된 교과서 분석 및 대안 모색. E-수학교육 논문집, 24(3), 587-610.
- 교육부(2015). 수학과 교육과정. 교육부 고시 제 2015-74호 [별책8].
- 김부미(2006). 수학적 오개념과 오류에 대한 인지심리학적 고찰. 이화여자대학교 박사학위논문.
- 김성기.김도한.계승혁(1998). 해석개론. 서울: 서울대학교 출판부.
- 우정호.정영옥.박경미.이경화.김남희.나귀수.임재훈(2006), 수학교육학 연구방법론. 서울:경문사.
- 이경화.강완(2008). 길이재기 단원의 여정: 수학 교과서 개발과정. 수학교육학연구, 18(2), 157-177.
- 이종희(2002). 수학적 개념의 역사적 발달과 인식론적 장애. 교과교육학연구, 6, 23-36.
- 이지현.최영기(2011). 학교수학과 대학수학에서 정의와 증명 개념 변화에 대한 수학사적 분석. 수학교육학연구, 21(1), 57-65.
- Boyer, C. B., & Merzbach, U. C. (2000). 수학의 역사.하. 양영오.조윤동 (공역). 서울: 경문사.(영어 원작은 1991년에 출판).
- Cobb, P., Stephan, M., McClain, K., & Gravemeijer, K. (2011). Participating in Classroom Mathematical Practices. A Journey in Mathematics Education Research, 117-163.
- Dorier, J. L. (1995). Meta level in the teaching of unifying and generalizing concepts in mathematics. Educational studies in mathematics, 29(2), 175-197. https://doi.org/10.1007/BF01274212
- Folland, G. B. (1999). Real Analysis : Mordern Techniques and Their Applications, (2nd Edition). NY: John Wiley & Sons.
- Freudenthal, H. (2006). Revisiting mathematics education: China lectures (Vol. 9). Springer Science & Business Media.
- Gucler, B. (2013). Examining the discourse on the limit concept in a beginning-level calculus classroom. Educational Studies in Mathematics, 82(3), 439-453. https://doi.org/10.1007/s10649-012-9438-2
- Harel, G. Selden, A., & Selden, J. (2006). Advanced mathematical thinking. Handbook of research on the psychology of mathematics education: past, present and future, 147-172.
- Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. Second handbook of research on mathematics teaching and learning, 2, 805-842.
- Kamii, C., & Clark, F. B. (1997). Measurement of length: The need for a better approach to teaching. School Science and Mathematics, 97(3), 116-121. https://doi.org/10.1111/j.1949-8594.1997.tb17354.x
- Luk, H. S. (2005). The gap between secondary school and university mathematics. International Journal of Mathematical Education in Science and Technology, 36(2-3), 161-174. https://doi.org/10.1080/00207390412331316988
- McClure, J. E. (2000). Start where they are: Geometry as an introduction to proof. The American Mathematical Monthly, 107(1), 44-52. https://doi.org/10.1080/00029890.2000.12005158
- Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational studies in mathematics, 22(1), 1-36. https://doi.org/10.1007/BF00302715
- Sfard, A. (2001). There is more to discourse than meets the ears: Looking at thinking as communicating to learn more about mathematical learning. Educational studies in mathematics, 46(1-3), 13-57. https://doi.org/10.1023/A:1014097416157
- Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge University Press.
- Sierpinska, A. (2000). On some aspects of students' thinking in linear algebra. In On the teaching of linear algebra (pp. 209-246). Springer Netherlands.
- Tall, D. (1997). From school to university: The transition from elementary to advanced mathematical thinking. In Proceedings of the 7th Conference of the Australasian Bridging Mathematics Network (pp. 1-20). Auckland, New Zealand.
- Toeplitz, O. (2006). 퇴플리츠의 미분적분학. 우정호.임재훈.박경미.이경화 (공역). 서울: 경문사.(영어 원작은 1963년에 출판).
- Weir, M. D., Hass, J., & Thomas, G. B. (2010). Thomas\'calculus.