DOI QR코드

DOI QR Code

Value Model for Applications of Big Data Analytics in Logistics

물류에서 빅데이터 분석의 활용을 위한 가치 모델

  • Received : 2017.07.28
  • Accepted : 2017.09.20
  • Published : 2017.09.28

Abstract

Big Data is a key asset for the company and a key factor in boosting its competitiveness in the logistics sector. However, there is still a lack of research on how to collect, analyze and utilize Big Data in logistics. In this context, this study has developed a value model applicable to logistics companies based on the results of analysis and application of Big Data in the logistics of previous studies and DHL. The purpose of this study is to improve the operational efficiency and customer experience maximization level of logistics companies through utilization of big data analysis in logistics, to improve competitiveness of big data utilization and to develop new business opportunities. This study has a significance to newly create a value model for utilization of big data analysis in logistics sector and can provide implications for other industries as well as logistics sector in the future.

빅데이터는 기업에게 있어 미래의 핵심자산이며 물류부문에도 새로운 경쟁력을 높일 수 있는 핵심적인 요소이다. 그러나 지금까지 물류에서 빅데이터를 어떻게 수집하고 분석하며 활용해야 할지에 대한 연구는 아직 부족하다. 이러한 상황에서 본 연구는 기존 선행연구와 DHL의 연구에서 나타난 물류에서의 빅데이터 분석 및 활용에 대한 결과를 바탕으로 물류기업에게 적용 가능한 하나의 가치모델을 개발하였다. 본 연구의 목적은 물류에서 빅데이터 분석의 활용을 통하여 물류기업의 운영효율성 및 고객경험의 극대화 수준을 향상키시고 빅데이터 활용에 따른 경쟁적 지위와 경쟁력을 향상시키고 새로운 사업기회를 개발하는 데에 있다. 이러한 연구는 물류부문에서 빅데이터 분석의 활용을 위한 가치모델을 새롭게 창출하는 의의가 있으며 향후 물류부문 뿐만 아니라 타 업종에도 적용가능한 시사점을 제공할 수 있다.

Keywords

References

  1. Kyoo-Sung Noh, and Joo-Yeoun Lee, "Convergence Study on Model of Job Design Support Platform Using Big data and AI," Journal of Digital Convergence, Vol. 14, No. 7, pp. 167-174, 2016. https://doi.org/10.14400/JDC.2016.14.7.167
  2. National Information Agency, 2015 Year Big Data Market Research, 2016.
  3. S. W. Lee, and S. H. Kim, "Finding Industries for Big Data Usage on the Basis of AHP", Journal of Digital Convergence, Vol. 14, No. 7, pp. 21-27. 2016. https://doi.org/10.14400/JDC.2016.14.7.21
  4. S. H. Kim, S. B. Park, and Y. G. Lee, "A Development of a Evaluation Framework for Public Sector ICT Adoption: Focused on Big Data, Cloud, Internet of Things, Journal of Information Technology and Architecture, Vol. 12, No. 3, pp. 419-428, 2015.
  5. Y. Jung, M. Suk, C. Kim, "A study on the success factors of Bigdata through an analysis of introduction effect of Bigdata", Journal of Digital Convergence, Vol 12, No. 11, pp. 241-248, 2014. https://doi.org/10.14400/JDC.2014.12.11.241
  6. K. S. Noh, "Educational Policy Proposals through Analysis of the Perception of Bigdata for University Students", Journal of Digital Convergence, Vol. 13, No. 11, pp. 25-33, 2015. https://doi.org/10.14400/JDC.2015.13.11.25
  7. M. J. Choi, and K. S. Noh, "Exploratory Study on Crime Prevention based on Bigdata Convergence - Through Case Studies of Seongnam City -", Journal of Digital Convergence, Vol. 14, No. 11, pp. 125-133 2016. https://doi.org/10.14400/JDC.2016.14.11.125
  8. K. S. Noh, S. Park, "An Exploratory Study on Application Plan of Bigdata to Manufacturing Execution System", Journal of Digital Convergence, Vol. 12, No. 1, pp. 305-311, 2014. https://doi.org/10.14400/JDPM.2014.12.1.305
  9. J. S. Kim, and W. S. Cho, "Data analysis of 4M data in small and medium enterprises", Journal of the Korean Data & Information Science Society, Vol. 26, No. 5, pp. 1117-1128, 2015. https://doi.org/10.7465/jkdi.2015.26.5.1117
  10. J. W. Gu, J. H. Lee, M. S. Chung, and J. Y. Lee, "Electric Vehicle Technology Trends Forecast Research Using the Paper and Patent Data", Journal of Digital Convergence, Vol. 15, No. 2, pp. 165-172, 2017. https://doi.org/10.14400/JDC.2017.15.2.165
  11. H. W. Park, and K. H. Choi, "Doing Social Big Data Analytics: A Reflection on Research Question, Data format, and Statistical Test-Convergent Aspects", Journal of Digital Convergence, Vol. 14, No. 12, pp. 591-597, 2016. https://doi.org/10.14400/JDC.2016.14.12.591
  12. KPMG, "Supply Chain Big Data Series Part 1: How big data is shaping the supply chains of tomorrow", p. 7, 2017.
  13. McKinsey Global Institute, Big Data: The next frontier for innovation, competition, and productivity, 2011.
  14. Gartner Group, Selecting Impactful Big Data Use Cases, 2015.
  15. J. K. Choi, "Implication and Application of Big Data Analytics in Domestic and Oversea", KISTEP InI, Vol.14, p. 38, 2016.
  16. S. K. Lee, and S. T. Jung, "Smart Logistics in Big Data Era", ie Magazine, Vol. 23, No. 4, pp. 14-15, 2016.
  17. B. Mikavicaa, A. Kostic-Ljubisavljevica, and V. R. Dogatovica, "BIG DATA: CHALLENGES AND OPPORTUNITIES IN LOGISTICS SYSTEMS", 2nd Logistics International Conference, Belgrade Serbia, p. 185, 2015.
  18. KPMG, "Supply Chain Big Data Series Part 3: Leveraging data analytics for supply chain process improvement and risk management", pp. 7-11, 2017.
  19. K. S. Kim, S. K. Kim, and K. J. Park, "Trend Analysis of Oversea Direct Purchasing and Reverse Overseas Direct Purchasing", Samjong KPMG Research Institute, pp. 7-8, 2016.
  20. Y. Y. Zhang, "The Development Strategy for the Chinese Online Shopping Express Delivery services", Department of International Trade Graduate School CheongJu University, 2013.
  21. S. J. Kim, and U. M. Kim, "Study on Reverse Overseas Direct Purchasing for China", The Journal of Korea Research Society and Customs", Vol. 18, No. 1, pp. 214-230, 2017.
  22. J. H. King, and H. N. Sung, "Study on Web Maven's Motivation for Knowledge Sharing and Information Diffusion in Overseas Direct Purchasing", The Journal of Internet Electronic Commerce Research, Vol. 14, No. 6, pp. 257-274, 2014.
  23. S. Kim, and J. W. Im, "A Study on the Influence of Consumer Characteristics on Foreign Direct Purchase", Journal of Korea Trade, Vol. 40, No. 4, pp. 21-39, 2015.
  24. S. K. Lee, and S. T. Jung, "Smart Logistics in Big Data Era", ie Magazine, Vol. 23, No. 4, pp. 16-17, 2016.
  25. J. K. Choi, "Implication and Application of Big Data Analytics in Domestic and Oversea", KISTEP InI, Vol.14, pp. 15-16, 2016.
  26. C. H. Kim, "A Study on the Major Issues of B2C Cross-Border Electronic Commerce", Journal of Korea Research Association of International Commerce, Vol. 16, No. 2, pp. 307-326, 2016.
  27. J. H. Park, and H. N. Lee, "Status and Implications of E-commerce Activation Policy in Cross Border Trading of China", Research Paper, Korea Institute for International Economic Policy, pp. 5-24, 2016.
  28. D. R. Lee, "Strategic Tasks of Cold Chain in Gwangyang Port under Korea-China FTA", The Journal of Shipping & Logistics, Vol. 33, No. 1, pp. 201-214, 2017.
  29. K. S. Im, New Key Word in Logistics, Last Mile, Incheon Port Authority, Official Blog, 2017.
  30. N. K. Park, and Y. O. Jo, "Home-country environmental conditions, international expansion, and firm value", International e-Commerce Studies, Vol. 8, No. 3, pp. 293-313, 2014.
  31. D. R. Lee, "Strategic Tasks of Cold Chain in Gwangyang Port under Korea-China FTA", The Journal of Shipping & Logistics, Vol. 33, No. 1, pp, 201-214, 2017.
  32. DHL, "BIG DATA IN LOGISTICS: A DHL perspective on how to move beyond the hype", DHL Research Report, pp. 3-27, 2013.
  33. C. S. Park, "Diffusion of Last Mile Delivery and Transformation of the Logistics Industry", KISDI, pp. 9-14, 2017.
  34. S. H. Han, and S. R, Kim, "A Case Study on the Introduction of Logistics System in Online Shopping Mall", Chung-Ang University, Korea Electronic Trade Institute, pp. 73-92, 2017.
  35. DHL, "LOGISTICS TREND RADAR: Delivering insight today. Creating value tomorrow!", DHL Research Report, p. 3-4, 2014.
  36. H. S. Byeon, "The Status and Suggestions for Big Data Adaptation in the Government and the Public Agency", Journal of Digital Convergence, Vol. 15, No. 4, pp. 13-23, 2017. https://doi.org/10.14400/JDC.2017.15.4.13