참고문헌
- Siegel JP, Sharon M, Smith PL and Leonard WJ (1987) The IL-2 receptor beta chain (p70): role in mediating signals for LAK, NK, and proliferative activities. Science 238, 75-78 https://doi.org/10.1126/science.3116668
- Mingari MC, Gerosa F, Carra G et al (1984) Human interleukin-2 promotes proliferation of activated B cells via surface receptors similar to those of activated T cells. Nature 312, 641-643 https://doi.org/10.1038/312641a0
- Liao W, Lin JX, Wang L, Li P and Leonard WJ (2011) Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol 12, 551-559
- Liao W, Lin JX and Leonard WJ (2013) Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38, 13-25 https://doi.org/10.1016/j.immuni.2013.01.004
- Williams TM, Moolten D, Burlein J et al (1991) Identification of a zinc finger protein that inhibits IL-2 gene expression. Science 254, 1791-1794 https://doi.org/10.1126/science.1840704
- Pavan Kumar P, Purbey PK, Sinha CK et al (2006) Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo. Mol Cell 22, 231-243 https://doi.org/10.1016/j.molcel.2006.03.010
- Martins GA, Cimmino L, Liao J, Magnusdottir E and Calame K (2008) Blimp-1 directly represses Il2 and the Il2 activator Fos, attenuating T cell proliferation and survival. J Exp Med 205, 1959-1965 https://doi.org/10.1084/jem.20080526
- Oyake T, Itoh K, Motohashi H et al (1996) Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol 16, 6083-6095 https://doi.org/10.1128/MCB.16.11.6083
- Muto A, Tashiro S, Nakajima O et al (2004) The transcriptional programme of antibody class switching involves the repressor Bach2. Nature 429, 566-571 https://doi.org/10.1038/nature02596
- Muto A, Ochiai K, Kimura Y et al (2010) Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch. EMBO J 29, 4048-4061 https://doi.org/10.1038/emboj.2010.257
- Roychoudhuri R, Hirahara K, Mousavi K et al (2013) BACH2 represses effector programs to stabilize T(reg)- mediated immune homeostasis. Nature 498, 506-510 https://doi.org/10.1038/nature12199
- Tsukumo S, Unno M, Muto A et al (2013) Bach2 maintains T cells in a naive state by suppressing effector memory-related genes. Proc Natl Acad Sci U S A 110, 10735-10740 https://doi.org/10.1073/pnas.1306691110
- Kim EH, Gasper DJ, Lee SH, Plisch EH, Svaren J and Suresh M (2014) Bach2 regulates homeostasis of Foxp3+ regulatory T cells and protects against fatal lung disease in mice. J Immunol 192, 985-995 https://doi.org/10.4049/jimmunol.1302378
- Roychoudhuri R, Clever D, Li P et al (2016) BACH2 regulates CD8+ T cell differentiation by controlling access of AP-1 factors to enhancers. Nat immunol 17, 851-860 https://doi.org/10.1038/ni.3441
- Muto A, Tashiro S, Tsuchiya H et al (2002) Activation of Maf/AP-1 repressor Bach2 by oxidative stress promotes apoptosis and its interaction with promyelocytic leukemia nuclear bodies. J Biol Chem 277, 20724-20733 https://doi.org/10.1074/jbc.M112003200
- Lesniewski ML, Haviernik P, Weitzel R et al (2008) Regulation of IL-2 expression by transcription factor BACH2 in umbilical cord blood CD4+ T cells. Leukemia 22, 2201-2207 https://doi.org/10.1038/leu.2008.234
- International Multiple Sclerosis Genetics C, Wellcome Trust Case Control C, Sawcer S et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214-219 https://doi.org/10.1038/nature10251
- Ferreira MA, Matheson MC, Duffy DL et al (2011) Identification of IL6R and chromosome 11q13. 5 as risk loci for asthma. Lancet 378, 1006-1014 https://doi.org/10.1016/S0140-6736(11)60874-X
- Franke A, McGovern DP, Barrett JC et al (2010) Genomewide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet 42, 1118-1125 https://doi.org/10.1038/ng.717
- Cooper JD, Smyth DJ, Smiles AM et al (2008) Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet 40, 1399-1401 https://doi.org/10.1038/ng.249
- Choi YB, Kim CK and Yun Y (1999) Lad, an adapter protein interacting with the SH2 domain of p56lck, is required for T cell activation. J Immunol 163, 5242-5249
-
Chen R, Belanger S, Frederick MA et al (2014) In vivo RNA interference screens identify regulators of antiviral
$CD4^+$ and$CD8^+$ T cell differentiation. Immunity 41, 325-338 https://doi.org/10.1016/j.immuni.2014.08.002 - Oh Y-K, Jang E, Paik D-J and Youn J (2015) Early growth response-1 plays a non-redundant role in the differentiation of B cells into plasma cells. Immune Netw 15, 161-166 https://doi.org/10.4110/in.2015.15.3.161
- Choi YS, Gullicksrud JA, Xing S et al (2015) LEF-1 and TCF-1 orchestrate T(FH) differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat Immunol 16, 980-990 https://doi.org/10.1038/ni.3226
- Cho WS, Jang E, Kim H-Y and Youn J (2016) Interleukin 17-expressing innate synovial cells drive K/BxN seruminduced arthritis. Immune Netw 16, 366-372 https://doi.org/10.4110/in.2016.16.6.366
- Na HH, Noh HJ, Cheong HM, Kang Y and Kim KC (2016) SETDB1 mediated FosB expression increases the cell proliferation rate during anticancer drug therapy. BMB Rep 49, 238-243 https://doi.org/10.5483/BMBRep.2016.49.4.031
- Jeong Y-S, Kim D, Lee YS et al (2011) Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucoseregulated gene expression. PloS One 6, e22544 https://doi.org/10.1371/journal.pone.0022544
피인용 문헌
- Understanding of the functional role(s) of the Activating Transcription Factor 4(ATF4) in HIV regulation and production vol.51, pp.8, 2018, https://doi.org/10.5483/BMBRep.2018.51.8.054