DOI QR코드

DOI QR Code

Microstructural and Electrical Properties of Bi0.9A0.1Fe0.975V0.025O3+α(A=Nd, Tb) Thin Films by Chemical Solution Deposition Method

화학용액 증착법으로 제조한 Bi0.9A0.1Fe0.975V0.025O3+α(A=Nd, Tb) 박막의 구조와 전기적 특성

  • 장성근 (청운대학교 인천캠퍼스 전자공학과) ;
  • 김윤장 (청운대학교 인천캠퍼스 전자공학과)
  • Received : 2017.08.02
  • Accepted : 2017.08.16
  • Published : 2017.10.01

Abstract

We have evaluated the ferroelectric and electrical properties of pure $BiFeO_3$ (BFO) and $Bi_{0.9}A_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (A=Nd, Tb) thin films on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by using a chemical solution deposition method. The remnant polarization ($2P_r$) of the $Bi_{0.9}Tb_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (BTFVO) thin film was approximately $65{\mu}C/cm^2$, with a maximum applied electric field of 950 kV/cm and a frequency of 10 kHz, where as that of the $Bi_{0.9}Nd_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (BNFVO) thin film was approximately $37{\mu}C/cm^2$ with a maximum applied electric field of 910 kV/cm. The leakage current density of the co-doped BNFVO thin film was four orders of magnitude lower than that of the pure BFO thin film, at $2.75{\times}10^{-7}A/cm^2$ with an applied electric field of 100 kV/cm. The grain size and uniformity of the co-doped BNFVO and BTFVO thin films were improved, in comparison to the pure BFO thin film, through structural modificationsdue to the co-doping with Nd and Tb.

Keywords

References

  1. W. Prellier, M. P. Singh, and P. Murugavel, J. Phys.: Condens Matter, 17, R803 (2005). [DOI: https://doi.org/10.1002/chin.200602223]
  2. S. M. Selbach, T. Tybell, M. A. Einarsrud, and T. Grande, Adv. Mater., 20, 3692 (2008). [DOI: https://doi.org/10.1002/adma.200800218]
  3. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Nat. Mater., 5, 823 (2006). [DOI: https://doi.org/10.1038/nmat1731]
  4. L. W. Martin, Y. H. Chu, and R. Ramesh, Mater. Sci. Eng. R: Rep., 68, 89 (2010). [DOI: https://doi.org/10.1016/j.mser.2010.03.001]
  5. D. K. Pradhan, R.N.P. Choudhary, C. Rinaldi, and R. S. Katiyar, J. Appl. Phys., 106, 024102 (2009). [DOI: https://doi.org/10.1063/1.3158121]
  6. Z. Hu, M. Li, B. Yu, L. Pei, J. Liu, J. Wang, and X. Zhao, J. Physic. D: Appl. Phys., 42, 185010 (2009). [DOI: https://doi.org/10.1088/0022-3727/42/18/185010]
  7. B. Yu, M. Li, J. Liu, D. Guo, L. Pei, and X. Zhao, J. Physic. D: Appl. Phys., 41, 065003 (2008). [DOI: https://doi.org/10.1088/0022-3727/41/6/065003]
  8. B. Yu, M. Li, J. Wang, L. Pei, D. Guo, and X. Zhao, J. Physic. D: Appl. Phys., 41, 185401 (2008). [DOI: https://doi.org/10.1088/0022-3727/41/18/185401]
  9. T. Kawae, H. Tsuda, H. Naganuma, S. Yamada, M. Kumeda, S. Okamura, and A. Morimoto, Jpn. J. Appl. Phys., 47, 7586 (2008). [DOI: https://doi.org/10.1143/jjap.47.7586]
  10. X. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, Appl. Phys. Lett., 86, 062903 (2005). [DOI: https://doi.org/10.1063/1.1862336]
  11. R. D. Shannon, Acta Crystallogr. A: Found. Adv., 32, 751 (1976). [DOI: https://doi.org/10.1107/s0567739476001551]
  12. M. K. Singh, H. M. Jang, S. Ryu, and M. H. Jo, Appl. Phys. Lett., 88, 042907 (2006). [DOI: http://doi.org/10.1063/1.2168038]
  13. M. Muneeswaran, R. Dhanalakshmi, and N. V. Giridharan, J. Mater. Sci.: Mater. Electron., 26, 3827 (2015). [DOI: http://doi.org/10.1007/s10854-015-2909-3]
  14. I. Vrejoiu, G. Le Rhun, L. Pintilie, D. Hesse, M. Alexe, and U. Gosele, Adv. Mater., 18, 1657 (2006). [DOI: https://doi.org/10.1002/adma.200502711]
  15. C. M. Raghavan, J. W. Kim, H. J. Kim, and S. S. Kim, J. Sol-Gel. Sci. Technol., 64, 178 (2012). [DOI: https://doi.org/10.1007/s10971-012-2845-0]
  16. J. W. Kim, D. Do, and S. S. Kim, Thin Solid Films, 518, 6514 (2010). [DOI: http://doi.org/10.1016/j.tsf.2010.02.001]