DOI QR코드

DOI QR Code

쌍별귀뚜라미(Gryllus bimaculatus) 소화기관에서 분리한 6종류의 특성규명

Isolation and Characterization of Six Microorganisms from the Digestive Tract of the Cricket Gryllus bimaculatus

  • Kwon, Kisang (Department of Biomedical Laboratory Science, College of Nursing & Health, Kyungwoon University) ;
  • Lee, Eun Ryeong (Department of Biomedical Laboratory Science, College of Nursing & Health, Kyungwoon University) ;
  • Yoo, Bo-Kyung (Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University) ;
  • Ko, Young Hwa (Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University) ;
  • Shin, Hyojung (Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University) ;
  • Choi, Ji-Young (Applied Entomology Division, National Academy of Agricultural Science, RDA) ;
  • Kwon, O-Yu (Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University)
  • 투고 : 2017.04.28
  • 심사 : 2017.06.15
  • 발행 : 2017.09.30

초록

우리는 처음으로 쌍별귀뚜라미 소화기관에서 6종류의 미생물을 분리하고 특성을 규명하였다. 이들은 16S rDNA을 기준으로 분류한 결과 4종류(Staphylococcus, Bacillus, Citrobacter, Proteus)에 속하였다. 분리된 6종류의 미생물은 공통적으로 ampicillin에 저항성을 보이지만 kanamycin 저항성은 보이지 않았다. 이들을 Gram염색하여 미생물의 형태적 특징을 확인하였다. Gram-positive한 rod-shaped GL2와 round-shaped GL4는 다른 분리 균 보다 많은 양의 세포외분비물을 만들었다, 이들을 MALDI-TOF-MS spectral analysis결과 87-kDa collagenase, 56-kDa & 200-kDa hypothetical protein이였다. 새롭게 분리된 6종류의 미생물은 귀뚜라미의 생리에 미치는 영향과 이들의 생물공학적 혹은 해충 방제에 이용될 수 있는 연구가 기대된다.

We describe the isolation and characterization of six different intestinal microorganisms from the digestive tract of the cricket Gryllus bimaculatus. Based on 16S rRNA gene sequences, we obtained six isolates belonging to four different genera: Staphylococcus, Bacillus, Citrobacter, and Proteus. All the isolates were resistant to ampicillin. Ampicillin is an irreversible inhibitor of the enzymeetranspeptidase, which is needed to make bacterial cell walls. None of the isolates were resistant to kanamycin, which binds to the 30S subunit of the bacterial ribosome and then inhibits total protein synthesis. Gram staining was conducted, in addition to morphological classification under a microscope. Four grampositive isolates and two gram-negative isolates were detected. The gram-positive isolates were GL1 (round shaped, 2 am in diameter), GL2 (rod shaped, $2.5{\mu}m$ in length), GL3 (rod shaped, $2{\mu}m$ in length), and GL4 (round shaped, $1.5{\mu}m$ in diameter). The gram-negative isolates were GL5 (rod shaped, $2{\mu}m$ in length) and GL6 (rod-shaped, $2.5{\mu}m$ in length). Notably, two of the isolates, GL2 and GL4, secreted specific extracellular proteins. These were determined by MALDI-TOF-MS spectral analysis to be a 87 kDa collagenase, 56 kDa hypothetical protein, and 200 kDa hypothetical protein. The six isolates in this study could be used for various biotechnological applications and pest management, both in the field and in greenhouse systems. In addition, it would be interesting to determine the relationship between these isolates and their host.

키워드

참고문헌

  1. Ahn, M. Y., Hwang, J. S., Kim, M. J. and Park, K. K. 2016. Antilipidemic effects and gene expression profiling of the glycosaminoglycans from cricket in rats on a high fat diet. Arch. Pharm. Res. 39, 926-936. https://doi.org/10.1007/s12272-016-0749-1
  2. Armbruster, C. E. and Mobley, H. 2010. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat. Rev. Microbiol. 10, 743-754.
  3. Callaway, T. R., Edrington, T. S., Anderson, R. C., Byrd, J. A. and Nisbet, D. J. 2008. Gastrointestinal microbial ecology and the safety of our food supply as related to Salmonella. J. Anim. Sci. 86, E163-172. https://doi.org/10.2527/jas.2007-0457
  4. Ceuppens, S., Boon, N. and Uyttendaele, M. 2013. Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiol. Ecol. 84, 433-450. https://doi.org/10.1111/1574-6941.12110
  5. de Boer, A. S. and Diderichsen, B. 1991. On the safety of Bacillus subtilis and B. amyloliquefaciens. Appl. Microbiol. Biotechnol. 36, 1-4. https://doi.org/10.1007/BF00164689
  6. Dillon, R. J. and Dillon, V. M. 2004. The gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 49, 71-92. https://doi.org/10.1146/annurev.ento.49.061802.123416
  7. Duarte, A. S., Correia, A. and Esteves, A. C. 2016. Bacterial collagenases. Crit. Rev. Microbiol. 42, 106-126. https://doi.org/10.3109/1040841X.2014.904270
  8. Edlund, C. and Nord, C. E. 1989. Suppression of the oropharyngeal and gastrointestinal microflora by ciprofloxacin: microbiological and clinical consequences. Scand. J. Infect. Dis. Suppl. 60, 98-103.
  9. Engel, P. and Moran, N. A. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37, 699-735. https://doi.org/10.1111/1574-6976.12025
  10. Heo, S. J., Kwak, H. W., Oh, D. S., Park, D. S., Bae, K. S., Shin, D. H. and Park, H. Y. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16, 1753-1759.
  11. Kim, K. D., Park, D. S., Shin, D. H., Han, B. N., Oh, H. W., Youn, Y. N. and Park, H. Y. 2006. Characterization of a ligninase producing strain, Serratia marcescens HY-5 isolated from Sympetrum depressiusculum. Kor. J. Appl. Entomol. 45, 301-307.
  12. Kocharova, N. A., Katzenellenbogen, E., Zatonsky, G. V., Gamian, A., Brzozowska, E., Shashkov, A. S. and Knirel, Y. A. 2010. Structure of the O-polysaccharide of Citrobacter youngae PCM 1503. Carbohydr. Res. 345, 2571-2573. https://doi.org/10.1016/j.carres.2010.07.035
  13. Krishnan, M., Bharathiraja, C., Pandiarajan, J., Prasanna, V. A., Rajendhran, J. and Gunasekaran, P. 2014. Insect gut microbiome - An unexploited reserve for biotechnological application. Asian Pac. J. Trop. Biomed. 4, S16-21. https://doi.org/10.12980/APJTB.4.2014C95
  14. Kwak, J., Lee, D. H., Park, Y. D., Kim, S. B., Maeng, J. S., Oh, H. W., Park, H. Y. and Bae, K. S. 2006. Polyphasic assignment of a highly proteolytic bacterium isolated from a spider to Serratia proteamaculans. J. Microbiol. Biotechnol. 16, 1537-1543.
  15. Mombelli, A. 2012, Antimicrobial advances in treating periodontal diseases. Front. Oral. Biol. 15, 133-148.
  16. Nakamura, T., Mito, T., Bando, T., Ohuchi, H. and Noji, S. 2008. Dissecting insect leg regeneration through RNA interference. Cell. Mol. Life Sci. 65, 64-72. https://doi.org/10.1007/s00018-007-7432-0
  17. Oliver, K. M., Moran, N. A. and Hunter, M. S. 2005. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc. Natl. Acad. Sci. USA 102, 12795-12800. https://doi.org/10.1073/pnas.0506131102
  18. Rajagopal, R., 2009. Beneficial interactions between insects and gut bacteria. Indian J. Microbiol. 49, 114-119. https://doi.org/10.1007/s12088-009-0023-z
  19. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  20. Santo Domingo, J. W., Kaufman, M. G., Klug, M. J. and Tiedje, J. M. 1998. Characterization of the cricket hindgut microbiota with fluorescently labeled rRNA-oargeted oligonucleotide probes. Appl. Environ. Microbiol. 64, 752-755.
  21. Siegenthaler, W. E., Bonetti, A. and Luthy, R. 1986. Aminoglycoside antibiotics in infectious diseases. Am. Med. J. 30, 2-14.
  22. Tsukamoto, Y., Kataoka, H., Nagasawa, H. and Nagata, S. 2014. Mating changes the female dietary preference in the two-spotted cricket, Gryllus bimaculatus. Front. Physiol. 5, 95.
  23. Ulrich, R. G., Buthala, D. A. and Klug, M. J. 1981. Microbiota associated with the gastrointestinal tract of the common house cricket, Acheta domesticus. Appl. Environ. Microbiol. 41, 246-254.
  24. Washington, M. A., Kajiura, L., Leon M. K., Agee, W. and Barnhill, J. 2015. Staphylococcus sciuri: An entomological case study and a brief review of the literature. J. Spec. Oper. Med. 15, 100-104.
  25. Wu, H. J. and Wu, E. 2012. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3, 4-14. https://doi.org/10.4161/gmic.19320
  26. Xia, F., Liu, Y., Shen, G. R., Guo, L. X. and Zhou, X. W. 2015. Investigation and analysis of microbiological communities in natural Ophiocordyceps sinensis. Can. J. Microbiol. 61, 104-111. https://doi.org/10.1139/cjm-2014-0610