DOI QR코드

DOI QR Code

Evaluate the Activation of Linear Accelerator Components and Shielding Wall through Simulation

모의실험을 통한 선형가속기 부품과 차폐벽의 방사화 평가

  • 이동연 (동남권원자력의학원 방사선종양학과) ;
  • 박은태 (인제대학교 부산백병원 방사선종양학과) ;
  • 김정훈 (부산가톨릭대학교 보건과학대학 방사선학과)
  • Received : 2017.06.19
  • Accepted : 2017.08.03
  • Published : 2017.09.28

Abstract

This study evaluated the activation of the shielding wall and the components around the accelerator by using the medical linear accelerator. We performed simulations for energy values of 20 MV with the operating time ranging from day 1 to 30 years, and linear accelerator head and shielding wall concrete were also evaluated. The results showed that neutrons in large quantities were analyzed using high energy around thetarget point where photons were formed. Based on the activation analysis with these results, radioactivity increased with an increase in operation time and activated nuclides usually start saturating in10 years. Furthermore, the general types of nuclides formed owingto the activation were Co-60, W-181, 185, 187, Na-24, Ca-45, Mn-54, 56, and Fe-55, 59.

본 연구는 의료용 선형가속기 사용에 따른 차폐벽과 가속기 주변 부품의 방사화에 대한 평가를 수행하였다. 평가방법은 에너지 20 MV와 가동시간 1 일부터 ~ 30 년까지 각각 모의실험을 진행 하였으며, 평가부분은 선형가속기 헤드 부분과 차폐벽을 이루고 있는 콘크리트에 대하여 실험을 진행하였다. 그 결과, 중성자 양은 광자가 생성되는 타깃을 중심으로 거리에 따라 중성자가 분포하는 것으로 분석되었다. 특히 타깃의 중성자 플럭스는 9.19E+08 개/$cm^2$/sec로 가장 높게 나타났다. 차폐벽은 상대적으로 타깃과 인접한 부분이 높게 분석되었으며, 그 값은 28967 개/$cm^2$/sec로 계산되었다. 이를 바탕으로 방사화를 분석한 결과 가동시간이 길수록 방사능이 높았으며, 대부분 10년부터 방사화가 포화되는 것으로 분석되었다. 또한 방사화로 인해 생성된 핵종은 대표적으로 Co-60, W-181, 185, 187, Na-24, Ca-45, Mn-54, 56, Fe-55, 59 등으로 나타났다.

Keywords

References

  1. 한국방사선진흥협회, 2015년도 방사선 및 방사성 동위원소 이용실태 조사, 미래창조과학부, 2017
  2. 이정옥, 정동혁, 강상수, "24 MV 의료용 선형가속기의 중성자 발생에 관한 연구," 의학물리학회, 제16권, 제2호, pp.97-103, 2005.
  3. 배성철, 김준호, 이철수, "선형가속기 10 MV 광자선에서 산란판(Beam Spoiler) 사용 시 표면선량 변화," 대한방사선치료학회지, 제18권, 제1호, pp.21-28, 2006.
  4. National Council on Radiation Protection and Measurement, Neutron Contamination from Medical Electron Accelerator, NCRP Report No.79, 1984.
  5. 박은태, "MCNPX를 이용한 방사선 치료실의 광중성자 선량평가," 한국콘텐츠학회논문지, 제15권, 제6호, pp.283-289, 2015. https://doi.org/10.5392/JKCA.2015.15.06.283
  6. O. Chibani and M. A. CMC, "Photonuclear dose calculations for high-energy photon beams from Simens and Varian linacs," Med. Phys., Vol.30, No.8, pp.1990-2000, 2003. https://doi.org/10.1118/1.1590436
  7. B. Julian, Simulation of neutron production at a medical linear accelerator, Institute of Experimental Physics University of Hamburg, 2007.
  8. J. A. Rawlinson, M. K. Islam, and D. M. Galbraith, "Dose to radiation therapists from activation at high-energy accelerators used for conventional and intensity-modulated radiation therapy," Med. Phys., Vol.29, No.4, pp.598-608, 2002. https://doi.org/10.1118/1.1463063
  9. Y. Z. Wang, M. D. C. Evans, and E. B. Podgorsak, "Characteristics of induced activity from medical accelerators," Med. Phys., Vol.32, No.9, pp.2899-2910, 2005. https://doi.org/10.1118/1.2001767
  10. H. W. Fischer, B. E. Tabot, and B. Poppe, "Activation processes in a medical linear accelerator and spatial distribution of activation products," Phys. Med. Biol., Vol.51, pp.N461-N466, 2006. https://doi.org/10.1088/0031-9155/51/24/N02
  11. International atomic Energy Agency, Radiation Protection in the Design of Radoitherapy Facilities, Safety Report Series No.47, 2006.
  12. Korea Atomic Energy Research Institute, Shielding Technology for High Energy Radiation Production Facility, 2004.
  13. R. A. Forrest, "FISPACT-2007: User manual," UKAEA FUS, Vol.534, 2007.
  14. International atomic Energy Agency, Classification of Radioactive Waste, General Safety Guide No. GSG-1, 2009.
  15. A. Mesbahi, M. Fix, M. Allahverdi, E. Grein, and H. Garaati, "Monte Carlo calculation of Varian 2300C/D Linac photon beam Characteristics: a comparison between MCNP4C, GEANT3 and measurements," Applied Radiation and Isotopes, Vol.62, No.3, pp.469-477, 2005. https://doi.org/10.1016/j.apradiso.2004.07.008
  16. A. Baumgartner, A. Steurer, and F. Maringer, "Simulation of photon energy spectra from Varian 2100C and 2300C/D Linacs: Simplified estimates with PENELOPE Monte Carlo models," Applied Radiation and Isotope, Vol.67, No.11, pp.2007-2012, 2009. https://doi.org/10.1016/j.apradiso.2009.07.010
  17. W. L. Huang, Q. F. Li, and Y. Z. Lin, "Calculation of photoneutrons produced in the targets of electron linear accelerators for radiography and radiotherapy applications," Nuclear Instruments and Methods in Physics Research, Vol.B, No.229, pp.339-347, 2005.
  18. 이동연, 박은태, "몬테칼로법을 이용한 의료용 선형가속기 차폐벽의 방사화 특성 분석," 한국콘텐츠학회논문지, 제16권, 제10호, pp.758-765, 2016. https://doi.org/10.5392/JKCA.2016.16.10.758
  19. Helmut W. Fischer, Ben E. Tabot, and Bjorn Poppe, "Activation processes in a medical linear accelerator and spatial distribution of activation products," Phys. Med. Biol. Vol.51, pp.N461- N466, 2006. https://doi.org/10.1088/0031-9155/51/24/N02