DOI QR코드

DOI QR Code

에이치(H)자 형태의 기생패치를 가진 초광대역 안티포달 비발디 안테나

Ultra-wideband Antipodal Vivaldi Antenna with H-shaped Parasitic Patches

  • Jung, Dongkeun (Department of Smart Electronics, Gumi Campus of Korea Polytechnic)
  • 투고 : 2017.07.25
  • 심사 : 2017.08.16
  • 발행 : 2017.09.30

초록

초광대역 안테나는 위성통신, 레이더, 리모트 센싱 시스템, 전파 망원경, 마이크로웨이브 화상 시스템 등의 여러가지 용도로 쓰인다. 수많은 형태의 광대역 안테나 구조들이 있으나, 테이퍼 슬롯 비발디 안테나는 가격, 무게, 스캔각도, 종형 복사, 쉬운 급전과 시스템 구성의 용이성 등의 장점이 있다. 이 논문에서는 개선된 안티포달 비발디 안테나를 제안하였다. 설계에 있어서 H자 형태의 기생패치 구조를 채택하였으며 이를 통해 전체 작동 주파수에 있어서 방사특성을 개선하는 능력을 나타내었다. 비유전율(${\epsilon}_r$) 2.2, 유전체 두께 0.7874mm의 RT/duroid 5880기판을 사용해 제안된 안테나의 시작품을 제작하고 측정한 결과 7.8-52.5GHz에 걸쳐 -10dB 반사손실 대역폭과 9-12dBi의 이득을 보였으며 이는 시뮬레이션 결과와 합리적으로 일치함을 확인하였다.

Ultra-wideband antennas are desired for several applications including satellite communications, radars, remote sensing system, telescopes, and microwave imaging systems. There are many types of wideband antenna structures, but the tapered slot Vivaldi antenna is advantageous in terms of cost, weight, scan angle capabilities, end-fire radiation, and ease of feeding and system integration. In this paper, a modified antipodal Vivaldi antenna is presented. A novel AVA with H-shaped parasitic patches has the capacity to improve the radiation characteristics in the whole operation frequencies. A prototype of the modified antenna with RT/duroid 5880 substrate of a relative dielectric constant (${\epsilon}_r$) of 2.2, and a thickness of 31mil is fabricated and experimentally studied as well. It measures a ${\mid}S_{11}{\mid}$ of less than -10dB and gain of 9-12dBi over 7.8-52.5GHz which shows reasonable agreement with the simulated one.

키워드

참고문헌

  1. P. J. Gibson, "The Vivaldi aerial," in Proceeding of the 9th European Microwave Conference, Brighton, UK, pp. 101-105, Sep. 1979.
  2. E. Gazit, "Improved design of the Vivaldi antenna," IEE Proceeding Part H-Microwaves, Antennas and Propagation, vol. 135, no. 2, pp. 89-92, Apr. 1988. https://doi.org/10.1049/ip-h-2.1988.0020
  3. J. Y. Siddiqui, Y. M. M. Antar, A. P. Freundorfer, E. C. Smith, G. A. Morin, T. Thayaparan, "Design of an ultrawideband tapered slot antenna using elliptical strip conductors," IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 251-254, Mar. 2011. https://doi.org/10.1109/LAWP.2011.2128296
  4. M. Sun, Z. Chen, X. Qing, "Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial," IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1741-1746, Apr. 2013. https://doi.org/10.1109/TAP.2012.2237154
  5. R. Natarajan, J. V. George, M. Kanagasabai, A. K. Shrivastav, "A compact antipodal Vivaldi antenna for UWB applications," IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1557-1560, Mar. 2015. https://doi.org/10.1109/LAWP.2015.2412255
  6. I. T. Nassar, T. M. Weller, "A novel method for improving antipodal Vivaldi antenna performance," IEEE Transactions on Antennas and Propagation, vol. 63, no. 7, pp. 3321-3324, Jul. 2015. https://doi.org/10.1109/TAP.2015.2429749
  7. E. Takemoto, A. Hirose, "Propeller-shaped antenna: A steerable ultrawideband planar antenna," IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1140-1143, Jun. 2014. https://doi.org/10.1109/LAWP.2014.2330602
  8. A. M. De Oliveira, M. B. Perotoni, S. T. Kofuji, J. F. Justo, "A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern," IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1334-1337, Feb. 2015. https://doi.org/10.1109/LAWP.2015.2404875
  9. A. M. Abbosh, "Miniaturized microstrip-fed tapered-slot antenna with ultrawideband performance," IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 690-692, Jun. 2009. https://doi.org/10.1109/LAWP.2009.2025613
  10. P. Fei, Y. C. Jiao, W. Hu, F. S. Zhang, "A Miniaturized antipodal Vivaldi antenna with improved radiation characteristics," IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 127-130, Feb. 2011. https://doi.org/10.1109/LAWP.2011.2112329
  11. K. Kikuta, A. Hirose, "Compact folded-fin tapered slot antenna for UWB application," IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1192-1195, Jan. 2015. https://doi.org/10.1109/LAWP.2015.2397008
  12. J. H. Yeo, J. I. Lee, "Design of Compact Stepped Open Slot Antenna for UWB Applications," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 1, pp. 1-7, Jan. 2017. https://doi.org/10.6109/jkiice.2017.21.1.1
  13. Y. S. Ha, G. R. Kim, Y. K. Choi, J. H. Yoon, "Design of UWB Antenna with Fork-type structure and circular patch," Journal of the Korea Institute of Information and Communication Engineering, vol. 20, no. 10, pp. 1837-1844, Oct. 2016. https://doi.org/10.6109/jkiice.2016.20.10.1837