DOI QR코드

DOI QR Code

SHIFTING AND MODULATION FOR FOURIER-FEYNMAN TRANSFORM OF FUNCTIONALS IN A GENERALIZED FRESNEL CLASS

  • Kim, Byoung Soo (School of Liberal Arts Seoul National University of Science and Technology)
  • Received : 2017.05.18
  • Accepted : 2017.07.04
  • Published : 2017.09.30

Abstract

Time shifting and frequency shifting proprerties for the Fourier-Feynman transform of functionals in a generalized Fresnel class ${\mathcal{F}}_{A_1,A_2}$ are given. We discuss scaling and modulation proprerties for the Fourier-Feynman transform. These properties help us to obtain Fourier-Feynman transforms of new functionals from the Fourier-Feynman transforms of old functionals which we know their Fourier-Feynman transforms.

Keywords

References

  1. J.M. Ahn, K.S. Chang, B.S. Kim and I. Yoo, Fourier-Feynman transform, convolution and first variation, Acta Math. Hungar. 100 (2003), 215-235. https://doi.org/10.1023/A:1025041525913
  2. S. Albeverio and R. Hegh-Krohn, Mathematical theory of Feynman path integrals, Lecture Notes in Math. 523, Springer-Verlag, Berlin, 1976.
  3. M.D. Brue, A functional transform for Feynman integrals similar to the Fourier transform, Thesis Univ. of Minnesota, Minneapolis, 1972.
  4. R.H. Cameron and D.A. Storvick, An $L_2$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30. https://doi.org/10.1307/mmj/1029001617
  5. R.H. Cameron and D.A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, Analytic Functions Kozubnik 1979, Lecture Notes in Math. 798, Springer-Verlag, Berlin, 1980, 18-67.
  6. R.H. Cameron and D.A. Storvick, A new translation theorem for the analytic Feynman integral, Rev. Roum. Math. Pures et Appl. 27 (1982), 937-944.
  7. K.S. Chang, B.S. Kim and I. Yoo, Analytic Fourier-Feynman transform and convolution of functionals on abstract Wiener space, Rocky Mountain J. Math. 30 (2000), 823-842. https://doi.org/10.1216/rmjm/1021477245
  8. T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), 661-673. https://doi.org/10.1090/S0002-9947-1995-1242088-7
  9. T. Huffman, C. Park and D. Skoug, Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J. 43 (1996), 247-261. https://doi.org/10.1307/mmj/1029005461
  10. G.W. Johnson and D.L. Skoug, An $L_p$ analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), 103-127. https://doi.org/10.1307/mmj/1029002166
  11. G.W. Johnson and D.L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), 157-176. https://doi.org/10.2140/pjm.1979.83.157
  12. G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic continuation in several complex variables, in \Stochastic Analysis and Application (ed. M.H.Pinsky)", Marcel-Dekker Inc., New York, 1984, 219-267.
  13. G. Kallianpur, D. Kannan and R.L. Karandikar, Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces and a Cameron-Martin formula, Ann. Inst. Henri. Poincare 21 (1985), 323-361.
  14. B.S. Kim, Shifting and variational properties for Fourier-Feynman transform and convolution, J. Funct. Space. 2015 (2015), 1-9.
  15. B.S. Kim, T.S. Song and I. Yoo, Analytic Fourier-Feynman transform and convolution of functionals in a generalized Fresnel class, J. Chungcheong Math. Soc. 22 (2009), 481-495.
  16. P.V. O'Neil, Advanced engineering mathematics, 5th ed. Thomson (2003).
  17. I. Yoo and B.S. Kim, Fourier-Feynman transforms for functionals in a generalized Fresnel class, Commun. Korean. Math. Soc. 22 (2007), 75-90. https://doi.org/10.4134/CKMS.2007.22.1.075

Cited by

  1. SHIFTING AND MODULATION FOR THE CONVOLUTION PRODUCT OF FUNCTIONALS IN A GENERALIZED FRESNEL CLASS vol.26, pp.3, 2018, https://doi.org/10.11568/kjm.2018.26.3.387