References
- B. N. Al-Saqabi and V.K. Tuan, Solution of a fractional differential equation, Int. Transform. Spec. Funct., 4 (1996), 321-326. https://doi.org/10.1080/10652469608819118
- H.M. Srivastava and R.K. Saxena, Operators of fractional integration and their applications, App. Math. Comp., 118 (2001), 1-52. https://doi.org/10.1016/S0096-3003(99)00208-8
- T.R. Prabhakar,A singular integral equation with a generalized Mittag-Leffer function in the kernel, Yokohama Math. J., 19 (1971), 171-183.
- A. Kilbas, M. Saigo and R. K. Saxena, Generalized Mittag-Leffer function and generalized fractional calculus operators,Int. Transf. Spec. Funct., 15 (2004), 31-49. https://doi.org/10.1080/10652460310001600717
- R. Garra, R. Goren o, F. Polito and Z. Tomovski, Hilfer-Prabhakar derivative and some applications, Appl. Math.Comput., 242 (2014), 576-589.
- C.M. Aslam and S.M. Zubair, Extended Gamma and digamma functions, Fract. Calcul. Appl. Anal., 4 (2001), 303-326.
- H.M. Srivastava, A. Cetinkaya and I.O. Kiymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput., 226 (2014), 484-491.
- R. Diaz and E. Pariguan, On hypergeometric functions and k-Pochhammer symbol, Divulg. Matem., 15(2), (2007).
- G. Dorrego and R. Cerutti, The k-Mittag-Leffer function, J. Contemp. Math. Sci., 7 (2012), 705-716.
- R. Cerutti, On the k-Bessel functions, Int. Math. Forum, 7 (2012), 1851-185.
- G. Romero and R. Cerutti, Fractional calculus of a k-Wright type function, Int. J. Contemp. Math. Sci. 7(31) (2012), 1547-1557.
- G. Romero, G. Dorrego and R. Cerutti, The k-Bessel functions of the first kind, Int. Math. Forum, 7(38) (2012), 1859-1864.
- G. Dorrego and R. Cerutti, k-fractional Hilfer derivative, Int. J. Math. Anal., 7 (2013), 543-550. https://doi.org/10.12988/ijma.2013.13051
- G. Dorrego, Alternative definition for the k-Riemann-Liouville fractional derivative, Appl. Math. Sci., 9 (2015), 481-491.
- G. Dorrego, Generalized Riemann-Liouville Fractional Operators Associated with a Generalization of the Prabhakar Integral Operator, Progr. Fract. Differ. Appl., 2(2) (2016), 131-140. https://doi.org/10.18576/pfda/020206
- A. Kilbas, M. Saigo and R.K Saxena, Solution of Volterra integro-differential equations with generalized Mittag-Leffer function in the kernels, J. Int. Equ. Appl., 14 (2002), 377-396. https://doi.org/10.1216/jiea/1181074929
- S. Mubeen, G.M. Habibullah, k-Fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89-94.
- G. Romero, G. Dorrego and R. Cerutti, k-Weyl fractional integral, Int. J. Math. Anal., 6(34) (2012), 1685-1691.
- G. Romero, L. Luque, G. Dorrego and R. Cerutti, On the k-Riemann-Liouville fractional derivative, Int. J. Cont. Math. Sci., 8 (2013), 41-51.
- Z. Tomovki, R. Hilfer and H.M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffer type functions, Integral Transforms and Special Functions, 21(11) (2010), 797-814. https://doi.org/10.1080/10652461003675737
- Z. Tomovski, R. Hilfer and H.M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffer type functions, Integral Transforms and Special Functions, 21(11) (2010), 797-814. https://doi.org/10.1080/10652461003675737
- H.J. Haubold and A.M. Mathai, The fractional kinetic equation and thermonuclear functions, Astrophys. Space Sci., 273 (2000), 53-63. https://doi.org/10.1023/A:1002695807970
- R. Hilfer, in: R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, (2000).
- R. Hilfer, Fractional time evolution, in Applications of Fractional Calculus in Physics; R. Hilfer, ed., World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, (2000), 87-130.
- R. Hilfer and L. Anton, Fractional master equations and fractal time random walks, Phys. Rev., E 51 (1995), R848-R851. https://doi.org/10.1103/PhysRevE.51.R848
- R.K. Gupta, B.S. Shaktawat and D. Kumar, A study of Saigo-Maeda fractional calculus operators associated with the Multiparameter K -Mittag-Leffer function, Asian Journal of Mathematics and Computer Research, 12(4) (2016), 243-251.
- R.K. Saxena and S.L. Kalla, On the solutions of certain fractional kinetic equations, Appl. Math. Comput., 199 (2008), 504-511.
- J. Choi and D. Kumar,Solutions of generalized fractional kinetic equations involving Aleph functions, Mathematical Communications, 20 (2015), 113-123.
- D. Kumar and J. Choi, Generalized fractional Kinetic equations associated with Aleph function, Proceeding of Jangjeon Mathematical Society, 19(1) (2016), 145-155.
- D. Kumar, S.D. Purohit, A. Secer and A. Atangana, On generalized fractional kinetic equations involving generalized Bessel function of the first kind, Mathematical Problems in Engineering, Article ID 289387, 2015 (2015), 7 pages.
- R.K. Saxena, J. Ram and D. Kumar, Alternative derivation of generalized fractional kinetic equations, Journal of Fractional Calculus and Applications, 4(2) (2013), 322-334.
- G.K.Watugala, Sumudu Transform: a new integral transform to solve differential equations and control engineering problems, Int. J. Math. Edu. Sci. Tech., 24 (1993), 35-43. https://doi.org/10.1080/0020739930240105
- T. Sandev, Z. Tomovski and J.L.A. Dubbeldam, Generalized Langevian equation with a three parameter Mittag-Leffer noise, Physica A: Statistical Mechanics and its Applications, 390(21) (2011), 3627-3636. https://doi.org/10.1016/j.physa.2011.05.039
- R. Goren o, F. Mainardi, D. Moretti and P. Paradisi, Time Fractional Diffusion: A Discrete Random Walk Approach, Nonlinear Dynamics, 29(1) (2002), 129-143. https://doi.org/10.1023/A:1016547232119
- J.A. Tenreiro Machado, Manuel F. Silva, Ramiro S. Barbosa, et al., Some Applications of Fractional Calculus in Engineering, Mathematical Problems in Engineering, 2010, Article ID 639801, 34 pages, (2010).