DOI QR코드

DOI QR Code

A GENERALIZATION OF THE KINETIC EQUATION USING THE PRABHAKAR-TYPE OPERATORS

  • Received : 2017.04.16
  • Accepted : 2017.06.18
  • Published : 2017.09.25

Abstract

Fractional kinetic equations are investigated in order to describe the various phenomena governed by anomalous reaction in dynamical systems with chaotic motion. Many authors have provided solutions of various families of fractional kinetic equations involving special functions. Here, in this paper, we aim at presenting solutions of certain general families of fractional kinetic equations using Prabhakar-type operators. The idea of present paper is motivated by Tomovski et al. [21].

Keywords

References

  1. B. N. Al-Saqabi and V.K. Tuan, Solution of a fractional differential equation, Int. Transform. Spec. Funct., 4 (1996), 321-326. https://doi.org/10.1080/10652469608819118
  2. H.M. Srivastava and R.K. Saxena, Operators of fractional integration and their applications, App. Math. Comp., 118 (2001), 1-52. https://doi.org/10.1016/S0096-3003(99)00208-8
  3. T.R. Prabhakar,A singular integral equation with a generalized Mittag-Leffer function in the kernel, Yokohama Math. J., 19 (1971), 171-183.
  4. A. Kilbas, M. Saigo and R. K. Saxena, Generalized Mittag-Leffer function and generalized fractional calculus operators,Int. Transf. Spec. Funct., 15 (2004), 31-49. https://doi.org/10.1080/10652460310001600717
  5. R. Garra, R. Goren o, F. Polito and Z. Tomovski, Hilfer-Prabhakar derivative and some applications, Appl. Math.Comput., 242 (2014), 576-589.
  6. C.M. Aslam and S.M. Zubair, Extended Gamma and digamma functions, Fract. Calcul. Appl. Anal., 4 (2001), 303-326.
  7. H.M. Srivastava, A. Cetinkaya and I.O. Kiymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput., 226 (2014), 484-491.
  8. R. Diaz and E. Pariguan, On hypergeometric functions and k-Pochhammer symbol, Divulg. Matem., 15(2), (2007).
  9. G. Dorrego and R. Cerutti, The k-Mittag-Leffer function, J. Contemp. Math. Sci., 7 (2012), 705-716.
  10. R. Cerutti, On the k-Bessel functions, Int. Math. Forum, 7 (2012), 1851-185.
  11. G. Romero and R. Cerutti, Fractional calculus of a k-Wright type function, Int. J. Contemp. Math. Sci. 7(31) (2012), 1547-1557.
  12. G. Romero, G. Dorrego and R. Cerutti, The k-Bessel functions of the first kind, Int. Math. Forum, 7(38) (2012), 1859-1864.
  13. G. Dorrego and R. Cerutti, k-fractional Hilfer derivative, Int. J. Math. Anal., 7 (2013), 543-550. https://doi.org/10.12988/ijma.2013.13051
  14. G. Dorrego, Alternative definition for the k-Riemann-Liouville fractional derivative, Appl. Math. Sci., 9 (2015), 481-491.
  15. G. Dorrego, Generalized Riemann-Liouville Fractional Operators Associated with a Generalization of the Prabhakar Integral Operator, Progr. Fract. Differ. Appl., 2(2) (2016), 131-140. https://doi.org/10.18576/pfda/020206
  16. A. Kilbas, M. Saigo and R.K Saxena, Solution of Volterra integro-differential equations with generalized Mittag-Leffer function in the kernels, J. Int. Equ. Appl., 14 (2002), 377-396. https://doi.org/10.1216/jiea/1181074929
  17. S. Mubeen, G.M. Habibullah, k-Fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89-94.
  18. G. Romero, G. Dorrego and R. Cerutti, k-Weyl fractional integral, Int. J. Math. Anal., 6(34) (2012), 1685-1691.
  19. G. Romero, L. Luque, G. Dorrego and R. Cerutti, On the k-Riemann-Liouville fractional derivative, Int. J. Cont. Math. Sci., 8 (2013), 41-51.
  20. Z. Tomovki, R. Hilfer and H.M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffer type functions, Integral Transforms and Special Functions, 21(11) (2010), 797-814. https://doi.org/10.1080/10652461003675737
  21. Z. Tomovski, R. Hilfer and H.M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffer type functions, Integral Transforms and Special Functions, 21(11) (2010), 797-814. https://doi.org/10.1080/10652461003675737
  22. H.J. Haubold and A.M. Mathai, The fractional kinetic equation and thermonuclear functions, Astrophys. Space Sci., 273 (2000), 53-63. https://doi.org/10.1023/A:1002695807970
  23. R. Hilfer, in: R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, (2000).
  24. R. Hilfer, Fractional time evolution, in Applications of Fractional Calculus in Physics; R. Hilfer, ed., World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, (2000), 87-130.
  25. R. Hilfer and L. Anton, Fractional master equations and fractal time random walks, Phys. Rev., E 51 (1995), R848-R851. https://doi.org/10.1103/PhysRevE.51.R848
  26. R.K. Gupta, B.S. Shaktawat and D. Kumar, A study of Saigo-Maeda fractional calculus operators associated with the Multiparameter K -Mittag-Leffer function, Asian Journal of Mathematics and Computer Research, 12(4) (2016), 243-251.
  27. R.K. Saxena and S.L. Kalla, On the solutions of certain fractional kinetic equations, Appl. Math. Comput., 199 (2008), 504-511.
  28. J. Choi and D. Kumar,Solutions of generalized fractional kinetic equations involving Aleph functions, Mathematical Communications, 20 (2015), 113-123.
  29. D. Kumar and J. Choi, Generalized fractional Kinetic equations associated with Aleph function, Proceeding of Jangjeon Mathematical Society, 19(1) (2016), 145-155.
  30. D. Kumar, S.D. Purohit, A. Secer and A. Atangana, On generalized fractional kinetic equations involving generalized Bessel function of the first kind, Mathematical Problems in Engineering, Article ID 289387, 2015 (2015), 7 pages.
  31. R.K. Saxena, J. Ram and D. Kumar, Alternative derivation of generalized fractional kinetic equations, Journal of Fractional Calculus and Applications, 4(2) (2013), 322-334.
  32. G.K.Watugala, Sumudu Transform: a new integral transform to solve differential equations and control engineering problems, Int. J. Math. Edu. Sci. Tech., 24 (1993), 35-43. https://doi.org/10.1080/0020739930240105
  33. T. Sandev, Z. Tomovski and J.L.A. Dubbeldam, Generalized Langevian equation with a three parameter Mittag-Leffer noise, Physica A: Statistical Mechanics and its Applications, 390(21) (2011), 3627-3636. https://doi.org/10.1016/j.physa.2011.05.039
  34. R. Goren o, F. Mainardi, D. Moretti and P. Paradisi, Time Fractional Diffusion: A Discrete Random Walk Approach, Nonlinear Dynamics, 29(1) (2002), 129-143. https://doi.org/10.1023/A:1016547232119
  35. J.A. Tenreiro Machado, Manuel F. Silva, Ramiro S. Barbosa, et al., Some Applications of Fractional Calculus in Engineering, Mathematical Problems in Engineering, 2010, Article ID 639801, 34 pages, (2010).