DOI QR코드

DOI QR Code

Volumetric Capacitance of In-Plane- and Out-of-Plane-Structured Multilayer Graphene Supercapacitors

  • Yoo, Jungjoon (Separation and Conversion Materials Laboratory, Energy Efficiency and Materials Research Division, Korea Institute of Energy Research (KIER)) ;
  • Kim, Yongil (Separation and Conversion Materials Laboratory, Energy Efficiency and Materials Research Division, Korea Institute of Energy Research (KIER)) ;
  • Lee, Chan-Woo (R&D Platform Center, Korea Institute of Energy Research (KIER)) ;
  • Yoon, Hana (Separation and Conversion Materials Laboratory, Energy Efficiency and Materials Research Division, Korea Institute of Energy Research (KIER)) ;
  • Yoo, Seunghwan (R&D Platform Center, Korea Institute of Energy Research (KIER)) ;
  • Jeong, Hakgeun (Energy Saving Laboratory, Energy Efficiency and Materials Research Division, Korea Institute of Energy Research (KIER))
  • 투고 : 2017.06.07
  • 심사 : 2017.08.20
  • 발행 : 2017.09.30

초록

A graphene electrode with a novel in-plane structure is proposed and successfully adopted for use in supercapacitor applications. The in-plane structure allows electrolyte ions to interact with all the graphene layers in the electrode, thereby maximizing the utilization of the electrochemical surface area. This novel structure contrasts with the conventional out-of-plane stacked structure of such supercapacitors. We herein compare the volumetric capacitances of in-plane- and out-of-plane-structured devices with reduced multi-layer graphene oxide films as electrodes. The in-plane-structured device exhibits a capacitance 2.5 times higher (i.e., $327F\;cm^{-3}$) than that of the out-of-plane-structured device, in addition to an energy density of $11.4mWh\;cm^{-3}$, which is higher than that of lithium-ion thin-film batteries and is the highest among in-plane-structured ultra-small graphene-based supercapacitors reported to date. Therefore, this study demonstrates the potential of in-plane-structured supercapacitors with high volumetric performances as ultra-small energy storage devices.

키워드

참고문헌

  1. Y. Huang, J. Liang, Y. Chen, Small, 2012, 8(12), 1805-1834. https://doi.org/10.1002/smll.201102635
  2. M. Beidaghi, C. Wang, Adv. Funct. Mater, 2012, 22(21), 4501-4510. https://doi.org/10.1002/adfm.201201292
  3. M.F. El-Kady, R.B. Kaner, Nat. Commun, 2012, 4,1475.
  4. Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, X. Chen, Adv. Mater, 2013, 25(29), 4035-4042. https://doi.org/10.1002/adma.201301332
  5. Z.-S. Wu, K. Parvez, X. Feng, K. Mullen, Nat. Commun, 2013, 4, 2487. https://doi.org/10.1038/ncomms3487
  6. W. Gao, N. Singh, L. Song, Z. Liu, A.L.M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, P.M. Ajayan, Nat. Nanotechnol, 2011, 6(8), 496-500. https://doi.org/10.1038/nnano.2011.110
  7. J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. Conway, A.L.M. Reddy, J. Yu, R. Vajtai, P.M. Ajayan, Nano Lett, 2011, 11(4), 1423-1427. https://doi.org/10.1021/nl200225j
  8. J.-P. Randin, E. Yeager, J. Electrochem. Soc, 1971, 118(5), 711-714. https://doi.org/10.1149/1.2408151
  9. J.-P. Randin, E. Yeager, J. Electroanal. Chem. Interfacial Electrochem, 1975, 58(2), 313-322. https://doi.org/10.1016/S0022-0728(75)80089-1
  10. D. Qu, J. Power Sources, 2002, 109(2), 403-411. https://doi.org/10.1016/S0378-7753(02)00108-8
  11. C.-H. Kim, S.-I. Pyun, J.-H. Kim, Electrochim. Acta, 2003, 48(23), 3455-3463. https://doi.org/10.1016/S0013-4686(03)00464-X
  12. G.-J. Lee, S.-I. Pyun, Electrochim. Acta, 2006, 51(15), 3029-3038. https://doi.org/10.1016/j.electacta.2005.08.037
  13. W. Yuan, Y. Zhou, Y. Li, C. Li, H. Peng, J. Zhang, Z. Liu, L. Dai, G. Shi, Sci. Rep, 2013, 3, 2248. https://doi.org/10.1038/srep02248
  14. J.-P. Randin, E. Yeager, Electroanal. Chem, 1972, 36(2), 257-276. https://doi.org/10.1016/S0022-0728(72)80249-3