DOI QR코드

DOI QR Code

Recent Progress in the Identification of Active Sites in Pyrolyzed Fe-N/C Catalysts and Insights into Their Role in Oxygen Reduction Reaction

  • Sa, Young Jin (Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Jae Hyung (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Joo, Sang Hoon (Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST))
  • 투고 : 2017.04.10
  • 심사 : 2017.05.15
  • 발행 : 2017.09.30

초록

Iron and nitrogen codoped carbon (Fe-N/C) catalysts have emerged as one of the most promising replacements for state-of-the-art platinum-based electrocatalysts for oxygen reduction reaction (ORR) in polymer electrolyte fuel cells. During the last decade, significant progress has been achieved in Fe-N/C catalysts in terms of ORR activity improvement and active site identification. In this review, we focus on recent efforts towards advancing our understanding of the structure of active sites in Fe-N/C catalysts. We summarize the spectroscopic and electrochemical methods that are used to analyze active site structure in Fe-N/C catalysts, and the relationship between active site structure and ORR activity in these catalysts. We provide an overview of recently reported synthetic strategies that can generate active sites in Fe-N/C catalysts preferentially. We then discuss newly suggested active sites in Fe-N/C catalysts. Finally, we conclude this review with a brief future outlook.

키워드

참고문헌

  1. H. A. Gasteiger, S. S. Kocha, B. Sompalli and F. T. Wagner, Appl. Catal. B: Environ., 2005, 56(1), 9-35. https://doi.org/10.1016/j.apcatb.2004.06.021
  2. M. K. Debe, Nature, 2012, 486(7401), 43-51. https://doi.org/10.1038/nature11115
  3. M. Shao, Q. Chang, J.-P. Dolelet and R. Chenitz, Chem. Rev., 2016, 116(6), 3594-3657. https://doi.org/10.1021/acs.chemrev.5b00462
  4. D. Banham and S. Ye, ACS Energy Lett., 2017, 2(3), 629-638. https://doi.org/10.1021/acsenergylett.6b00644
  5. K. Gong, F. Du, Z. Xia, M. Durstock and L. Dai, Science, 2009, 323(5915), 760-764. https://doi.org/10.1126/science.1168049
  6. Y. Zheng, Y. Jiao, M. Jaroniec, Y. Jin and S. Z. Qiao, Small, 2012, 8(23), 3550-3566. https://doi.org/10.1002/smll.201200861
  7. D.-W. Wang and D. Su, Energy Environ. Sci., 2014, 7(2), 576-591. https://doi.org/10.1039/c3ee43463j
  8. Y. J. Sa, C. Park, H. Y. Jeong, S.-H. Park, Z. Lee, K. T. Kim, G.-G. Park and S. H. Joo, Angew. Chem. Int. Ed., 2014, 53(16), 4102-4106. https://doi.org/10.1002/anie.201307203
  9. J. Y. Cheon, J. H. Kim, J. H. Kim, K. C. Goddeti, J. Y. Park and S. H. Joo, J. Am. Chem. Soc., 2014, 136(25), 8875-8878. https://doi.org/10.1021/ja503557x
  10. D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo and J. Nakamura, Science, 2016, 351(6271), 361-365. https://doi.org/10.1126/science.aad0832
  11. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, Nat. Mater., 2011, 10(10), 780-786. https://doi.org/10.1038/nmat3087
  12. J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough and Y. Shao-Horn, Nat. Chem., 2011, 3(7), 546-550. https://doi.org/10.1038/nchem.1069
  13. Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng and K. Mullen, J. Am. Chem. Soc., 2012, 134(22), 9082-9085. https://doi.org/10.1021/ja3030565
  14. C. Li, X. Han, F. Cheng, Y. Hu, C. Chen and J. Chen, Nat. Commun., 2015, 6, 7345. https://doi.org/10.1038/ncomms8345
  15. B. Seo, Y. J. Sa, J. Woo, K. Kwon, J. Park, T. J. Shin, H. Y. Jeong and S. H. Joo, ACS Catal., 2016, 6(7), 4347-4355. https://doi.org/10.1021/acscatal.6b00553
  16. F. Jaouen, E. Proietti, M. Lefevre, R. Chenitz, J.-P. Dodelet, G. Wu, H. T. Chung, C. M. Johnston and P. Zelenay, Energy Environ. Sci., 2011, 4(1), 114-130. https://doi.org/10.1039/C0EE00011F
  17. Z. Chen, D. Higgins, A. Yu, L. Zhang and J. Zhang, Energy Environ. Sci., 2011, 4(9), 3167-3192. https://doi.org/10.1039/c0ee00558d
  18. Q. Li, R. Cao, J. Cho and G. Wu, Adv. Energy Mater., 2014, 4(6), 1301415.
  19. G. Wu and P. Zelenay, Acc. Chem. Res., 2013, 46(8), 1878-1889. https://doi.org/10.1021/ar400011z
  20. W. Xia, A. Mahmood, Z. Liang, R. Zou and S. Guo, Angew. Chem. Int. Ed., 2016, 55(8), 2650-2676. https://doi.org/10.1002/anie.201504830
  21. Q. Jia, N. Ramaswamy, U. Tylus, K. Strickland, J. Li, A. Serov, K. Artyushkova, P. Atanassov, J. Anibal, C. Gumeci, S. C. Barton, M.-T. Sougrati, F. Jaouen, B. Halevi, S. Mukerjee, Nano Energy, 2016, 29, 65-82. https://doi.org/10.1016/j.nanoen.2016.03.025
  22. J. K. Dombrovskis and A. E. C. Palmqvist, Fuel Cells, 2016, 16(1), 4-22. https://doi.org/10.1002/fuce.201500123
  23. M. Shen, C. Wei, K. Ai and L. Lu, Nano Res., 2017, 10(5), 1449-1470. https://doi.org/10.1007/s12274-016-1400-7
  24. M. Lefevre, E. Proietti, F. Jaouen and J.-P. Dodelet, Science, 2009, 324(5923), 71-74. https://doi.org/10.1126/science.1170051
  25. F. Jaouen, J. Herranz, M. Lefevre, J.-P. Dodelet, U. I. Kramm, I. Herrmann, P. Bogdanoff, J. Maruyama, T. Nagaoka, A. Garsuch, J. R. Dahn, T. Olson, S. Pylypenko, P. Atanassov and E. A. Ustinov, ACS Appl. Mater. Interfaces, 2009, 1(8), 1623-1639. https://doi.org/10.1021/am900219g
  26. G. Wu, K. L. More, C. M. Johnston and P. Zelenay, Science, 2011, 332(6028), 443-447. https://doi.org/10.1126/science.1200832
  27. E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranz and J.-P. Dodelet, Nat. Commun., 2011, 2, 416. https://doi.org/10.1038/ncomms1427
  28. D. Zhao, J.-L. Shui, C. Chen, X. Chen, B. M. Reprogle, D. Wang and D.-J. Liu, Chem. Sci., 2012, 3(11), 3200-3205. https://doi.org/10.1039/c2sc20657a
  29. H.-W. Liang, W. Wei, Z.-S. Wu, X. Feng and K. Mullen, J. Am. Chem. Soc., 2013, 135(43), 16002-16005. https://doi.org/10.1021/ja407552k
  30. J. Y. Cheon, T. Kim, Y. Choi, H. Y. Jeong, M. G. Kim, Y. J. Sa, J. Kim, Z. Lee, T.-H. Yang, K. Kwon, O. Terasaki, G.-G. Park, R. R. Adzic and S. H. Joo, Sci. Rep., 2013, 3, 2715. https://doi.org/10.1038/srep02715
  31. H. T. Chung, J. H. Won and P. Zelenay, Nat. Commun., 2013, 4, 1922. https://doi.org/10.1038/ncomms2944
  32. A. Serov, K. Artyushkova and P. Atanassov, Adv. Energy Mater., 2014, 4(10), 1301735.
  33. I. Hijazi, T. Bourgeteau, R. Cornut, A. Morozan, A. Filoramo, J. Leroy, V. Derycke, B. Jousselme and S. Campidelli, J. Am. Chem. Soc., 2014, 136(17), 6348-6354. https://doi.org/10.1021/ja500984k
  34. Y. Zhu, B. Zhang, X. Liu, D.-W. Wang and D. S. Su, Angew. Chem. Int. Ed., 2014, 53(40), 10673-10677. https://doi.org/10.1002/anie.201405314
  35. P.-J. Wei, G.-Q. Yu, Y. Naruta and J.-G. Liu, Angew. Chem. Int. Ed., 2014, 53(26), 6659-6663. https://doi.org/10.1002/anie.201403133
  36. J. Shui, C. Chen, L. Grabstanowicz, D. Zhao and D.-J. Liu, Proc. Natl. Acad. Sci., 2015, 112(34), 10629-10634. https://doi.org/10.1073/pnas.1507159112
  37. K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy, W. Liang, M.-T. Sougrati, F. Jaouen, S and S. Mukerjee, Nat. Commun., 2015, 6, 7343. https://doi.org/10.1038/ncomms8343
  38. J. Han, Y. J. Sa, Y. Shim, M. Choi, N. Park, S. H. Joo and S. Park, Angew. Chem. Int. Ed., 2015, 54(43), 12622-12626. https://doi.org/10.1002/anie.201504707
  39. J. Y. Cheon, K. Kim, Y. J. Sa, S. H. Sahgong, Y. Hong, J. Woo, S.-D. Yim, H. Y. Jeong, Y. Kim and S. H. Joo, Adv. Energy Mater., 2016, 6(7), 1501794.
  40. J. Li, S. Ghoshal, W. Liang, M.-T. Sougrati, F. Jaouen, B. Halevi, S. McKinney, G. McCool, C. Ma, X. Yuan, Z.-F. Ma, S. Mukerjee and Q. Yia, Energy Environ. Sci., 2016, 9(7), 2418-2432. https://doi.org/10.1039/C6EE01160H
  41. R. Jasinski, Nature, 1964, 201(4925), 1212-1213. https://doi.org/10.1038/2011212a0
  42. A. Kozawa, V. E. Zilionis and R. J. Brodd, J. Electrochem. Soc., 1970, 117(12), 1470-1474. https://doi.org/10.1149/1.2407354
  43. J.-P. Randin, Electrochim. Acta, 1974, 19(2), 83-85. https://doi.org/10.1016/0013-4686(74)85060-7
  44. H. Jahnke, M. Schönborn and G. Zimmermann, Top. Curr. Chem., 1976, 61, 133-181.
  45. S. Gupta, D. Tryk, I. Bae, W. Aldred and E. Yeager, J. Appl. Electrochem., 1989, 19(1), 19-27. https://doi.org/10.1007/BF01039385
  46. U. I. Koslowski, I. Abs-Wurmbach, S. Flechter and P. Bogdanoff, J. Phys. Chem. C, 2008, 112(39), 15356-15366. https://doi.org/10.1021/jp802456e
  47. U. I. Kramm, J. Herranz, N. Larouche, T. M. Arruda, M. Lefevre, F. Jaouen, P. Bogdanoff, S. Fiechter, I. Abs-Wurmbach, S. Mukerjee and J.-P. Dodelet, Phys. Chem. Phys. Chem., 2012, 14(33), 11673-11688. https://doi.org/10.1039/c2cp41957b
  48. D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun and X. Bao, Angew. Chem. Int. Ed., 2013, 52(1), 371-375. https://doi.org/10.1002/anie.201204958
  49. Y. Hu, J. O. Jensen, W. Zhang, L. N. Cleemann, W. Xing, N. J. Bjerrum and Q. Li, Angew. Chem. Int. Ed., 2014, 53(14), 3675-3679. https://doi.org/10.1002/anie.201400358
  50. M. Lefèvre, J.-P. Dodelet and P. Bertrand, J. Phys. Chem. B, 2002, 106(34), 8705-8713. https://doi.org/10.1021/jp020267f
  51. W. Li, J. Wu, D. C. Higgins, J.-Y. Choi and Z. Chen, ACS Catal., 2012, 2(12), 2761-2768. https://doi.org/10.1021/cs300579b
  52. K. Artyushkova, A. Serov, S. Rojas-Carbonell and P. Atanassov, J. Phys. Chem. C, 2015, 119(46), 25917-25928 https://doi.org/10.1021/acs.jpcc.5b07653
  53. K. Artyushkova, B. Kiefer, B. Halevi, A. Knop-Geriche, R. Schlogl and P. Atanassov, Chem. Commun., 2013, 49(25), 2539-2541. https://doi.org/10.1039/c3cc40324f
  54. A. Zitolo, V. Goellner, V. Armel, M.-T. Sourgrati, T. Mineva, L. Stievano, E. Fonda and F. Jaouen, Nat. Mater., 2015, 14(9), 937-942. https://doi.org/10.1038/nmat4367
  55. U. Tylus, Q. Jia, K. Strickland, N. Ramaswamy, A. Serov, P. Atanassov and S. Mukerjee, J. Phys. Chem. C, 2014, 118(17), 8999-9008. https://doi.org/10.1021/jp500781v
  56. H. Schulenburg, S. Stankov, V. Schünemann, J. Radnik, I. Dorbandt, S. Fiechter, P. Bogdanoff and H. Tributsch, J. Phys. Chem. B, 2003, 107(34), 9034-9041. https://doi.org/10.1021/jp030349j
  57. Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook and H. Dai, Nat. Nanotechnol., 2012, 7(6), 394-400. https://doi.org/10.1038/nnano.2012.72
  58. Q. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland, G. Wu, B. Barbiellini, A. Bansil, E. F. Holby, P. Zelenay and S. Mukerjee, ACS Nano, 2015, 9(12), 12496-12505. https://doi.org/10.1021/acsnano.5b05984
  59. Q. Wang, Z.-Y. Zhou, Y.-J. Lai, Y. You, J.-G. Liu, X.-L. Wu, E. Terefe, C. Chen, L. Song, M. Rauf, N. Tian and S.-G. Sun, J. Am. Chem. Soc., 2014, 136(31), 10882-10885. https://doi.org/10.1021/ja505777v
  60. J. L. Oberst, M. S. Thorum and A. A. Gewirth, J. Phys. Chem. C, 2012, 116(48), 25257-25261. https://doi.org/10.1021/jp309707b
  61. D. Singh, K. Mamtani, C. R. Bruening, J. T. Miller and U. S. Ozkan, ACS Catal., 2014, 4(10), 3454-3462. https://doi.org/10.1021/cs500612k
  62. N. R. Sahraie, U. I. Kramm, J. Steinberg, Y. Zhang, A. Thomas, T. Reier, J.-P. Paraknowitsch and P. Strasser, Nat. Commun., 2015, 6, 8618. https://doi.org/10.1038/ncomms9618
  63. D. Maiko, A. Kucernak and T. Lopes, Nat. Commun., 2016, 7, 13285. https://doi.org/10.1038/ncomms13285
  64. F. Jaouen, M. Lefèvre, J.-P. Dodelet and M. Cai, J. Phys. Chem. B, 2006, 110(11), 5553-5558. https://doi.org/10.1021/jp057135h
  65. F. Jaouen and J.-P. Dodelet, Electrochim. Acta, 2007, 52(19), 5975-5984. https://doi.org/10.1016/j.electacta.2007.03.045
  66. U. I. Kramm, I. Herrmann-Geppert, J. Behrends, K. Lips, S. Fiechter and P. Bogdanoff, J. Am. Chem. Soc., 2016, 138(2), 635-640. https://doi.org/10.1021/jacs.5b11015
  67. U. I. Kramm, M. Lefevre, N. Larouche, D. Schmeisser and J.-P. Dodelet, J. Am. Chem. Soc., 2014, 136(3), 978-985. https://doi.org/10.1021/ja410076f
  68. Y. J. Sa, D.-J. Seo, J. Woo, J. T. Lim, J. Y. Cheon, S. Y. Yangm J. M. Lee, D. Kang, T. J. Shin, H. S. Shin, H. Y. Jeong, C. S. Kim, M. G. Kim, T.-Y. Kim and S. H. Joo, J. Am. Chem. Soc., 2016, 138(45), 15046-15056. https://doi.org/10.1021/jacs.6b09470
  69. U. I. Kramm, I. Herrmann-Geppert, S. Fiechter, G. Zehl, I. Zizak, I. Dorbandt, D. SchmeiBer and P. Bogdanoff, J. Mater. Chem. A, 2014, 2(8), 2663-2670. https://doi.org/10.1039/C3TA13821F
  70. Y.-C. Wang, Y.-J. Lai, L. Song, Z.-Y. Zhou, J.-G. Liu, Q. Wang, X.-D. Yang, C. Chen, W. Shi, Y.-P. Zheng, M. Rauf and S.-G. Sun, Angew. Chem. Int. Ed., 2015, 54(34), 9907-9910. https://doi.org/10.1002/anie.201503159
  71. M. Ferrandon, A. J. Kropf, D. J. Myers, K. Artyushkova, U. Kramm, P. Bogdanoff, G. Wu, C. M. Johnston and P. Zelenay, J. Phys. Chem. C, 2012, 116(30), 16001-16013. https://doi.org/10.1021/jp302396g
  72. S. Ferguson-Miller and G. T. Babcock, Chem. Rev., 1996, 96(7), 2889-2908. https://doi.org/10.1021/cr950051s
  73. T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono and S. Yoshikawa, Science, 1995, 269(5227), 1069. https://doi.org/10.1126/science.7652554
  74. J. P. Collman, N. K. Devaraj, R. A. Decreau, Y. Yang, Y.-L. Yan, W. Ebina, T. A. Eberspacher, C. E. D. Chidsey, Science, 2007, 315(5818), 1565-1568. https://doi.org/10.1126/science.1135844
  75. S. Mukherjee, A. Mukherjee, A. Bhagi-Damodaran, M. Mukherjee, Y. Lu and A. Dey, Nat. Commun., 2015, 6, 8467. https://doi.org/10.1038/ncomms9467
  76. A. Bhagi-Damodaran, M. A. Michael, Q. Zhu, J. Reed, B. A. Sandoval, E. N. Mirts, S. Chakraborty, P. Moenne-Loccoz, Y. Zhang and Y. Lu, Nat. Chem., 2017, 9(3), 257-263. https://doi.org/10.1038/nchem.2643
  77. H. Tributsch, U. I. Koslowski and I. Dorbandt, Electrochim. Acta, 2008, 53(5), 2198-2209. https://doi.org/10.1016/j.electacta.2007.09.027
  78. A. Serov, M. H. Robson, M. Smolnik and P. Atanassov, Electrochim. Acta, 2012, 80, 213-218. https://doi.org/10.1016/j.electacta.2012.07.008
  79. J. P. Collman, P. Denisevich, Y. Konai, M. Marrocco, C. Koval and F. C. Anson, J. Am. Chem. Soc., 1980, 102(19), 6027-6036. https://doi.org/10.1021/ja00539a009
  80. J.-P. Dodelet, R. Chenitz, L. Yang and M. Lefevre, ChemCatChem, 2014, 6(7), 1866-1867. https://doi.org/10.1002/cctc.201402133
  81. M. Xiao, J. Zhu, L. Feng, C. Liu and W. Xing, Adv. Mater., 2015, 27(15), 2521-2527. https://doi.org/10.1002/adma.201500262
  82. J. A. Varnell, E. C. M. Tse, C. E. Schulz, T. T. Fister, R. T. Haasch, J. Timoshenko, A. I. Frenkel and A. A. Gewirth, Nat. Commun., 2016, 7, 12582. https://doi.org/10.1038/ncomms12582
  83. J.-S. Lee, G. S. Park, S. T. Kim, M. Liu and J. Cho, Angew. Chem. Int. Ed., 2013, 52(3), 1026-1030. https://doi.org/10.1002/anie.201207193
  84. Z.-Y. Wu, X.-X. Xu, B.-C. Hu, H.-W. Liang, Y. Lin, L.-F. Chen and S.-H. Yu, Angew. Chem. Int. Ed., 2015, 54(28), 8179-8183. https://doi.org/10.1002/anie.201502173
  85. J. Wei, Y. Liang, Y. Hu, B. Kong, G. P. Simon, J. Zhang, S. P. Jiang and H. Wang, Angew. Chem. Int. Ed., 2016, 55(4), 1355-1359. https://doi.org/10.1002/anie.201509024
  86. W.-J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.-J. Zhang, J.-Q. Wang, J.-S. Hu, Z. Wei and L.-J. Wan, J. Am. Chem. Soc., 2016, 138(10), 3570-3578. https://doi.org/10.1021/jacs.6b00757
  87. J. H. Kim, Y. J. Sa, H. Y. Jeong and S. H. Joo, ACS Appl. Mater. Interfaces, 2017, 9(11), 9567-9575. https://doi.org/10.1021/acsami.6b13417