Anti-oxidative Effect of Blueberry Duke Extract in Caenorhabditis elegans

블루베리 듀크 추출물의 예쁜꼬마선충 내의 항산화 효과

  • Received : 2017.09.05
  • Accepted : 2017.09.15
  • Published : 2017.09.30

Abstract

We investigated the anti-oxidative effect of the blueberry duke (Vaccinium corymbosum L., Ericaceae) ethanol extract in Caenorhabditis elegans model. The ethanol extract of blueberry duke showed relatively significant DPPH radical scavenging and superoxide quenching activities. To prove antioxidant activity of the extract, we checked the activities of superoxide dismutase (SOD), catalase, intracellular ROS, and oxidative stress tolerance in C. elegans. In addition, to verify if the increased stress tolerance of C. elegans by treating with the extract was due to regulation of stress-response genes, we checked SOD-3 expression using a transgenic strain. As a consequence, the blueberry duke ethanol extract increased SOD and catalase activities of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Besides, blueberry duke ethanol extract-treated CF1553 worms showed higher SOD-3::GFP intensity.

Keywords

References

  1. Su, S. and Wink, M. (2015) Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans. Phytochemistry 117: 340-350. https://doi.org/10.1016/j.phytochem.2015.06.021
  2. Lim, S.-M. (2010) Resistance to reactive oxygen species and antioxidant activities of some strains of lactic acid bacteria from the mustard leaf kimchi. Korean J. Microbiol. 46: 375-382.
  3. den Endea, W. V., Pesheva, D. and Garab, L. D. (2011) Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends in Food Sci. Technol. 22: 689-697. https://doi.org/10.1016/j.tifs.2011.07.005
  4. Sohal, R. S., Agarwal, A., Agarwal, S. and Orr, W. C. (1995) Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J. Biol. Chem. 270: 15671-15674. https://doi.org/10.1074/jbc.270.26.15671
  5. Scandalios, J. G. (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 38: 995-1014. https://doi.org/10.1590/S0100-879X2005000700003
  6. Kim, A. R., Park, S. A., Ha, J. H. and Park, S. N. (2013) Antioxidative, and inhibitory activities on melanogenesis of Vitex negundo L. leaf extract. Korean J. Microbiol. Biotechnol. 41: 135-144. https://doi.org/10.4014/kjmb.1211.11004
  7. Branen, A. L. (1975) Toxicological and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 52: 59-63. https://doi.org/10.1007/BF02901825
  8. Shin, T. S., Kang, H. S., Kim, S. K., Lee, K. W. and Cho, B. W. (1999) Effect of natural and synthetic antioxidants on pH, POV, fatty acids composition and overall acceptability of cooked ground pork. J. Agri. Tech. & Dev. Inst. 3: 1-9.
  9. Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, I., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921. https://doi.org/10.1248/cpb.37.1919
  10. Ginnopolitis, C. N. and Ries, S. K. (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 59: 309-314. https://doi.org/10.1104/pp.59.2.309
  11. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
  12. Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabditis elegans. J. Med. Chem. 55: 4169-4177. https://doi.org/10.1021/jm2014315
  13. Aebi, H. (1984) Catalase in vitro. Method. Enzymol. 105: 121-126.
  14. Kim, H. N., Seo, H. W., Kim, B. S., Lim H. J., Lee, H, N., Park, J. S., Yoon, Y. J., Oh, J. W., Oh, M. J., Kwon, J., Oh, C. H., Cha, D. S. and Jeon, H. (2015) Lindera obtusiloba extends lifespan of Caenorhabditis elegans. Nat. Prod. Sci. 21: 128-133.
  15. Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
  16. Kalt, W., Ryan, D. A., Duy, J. C., Prior, R. L., Ehlenfeldt, M. K. and Vander Kloet, S. P. (2001) Interspecific variation in anthocyanins, phenolics, and antioxidant capacity among genotypes of highbush and lowbush blueberries (Vaccinium section cyanococcus spp.). J. Agric. Food Chem. 49: 4761-4767. https://doi.org/10.1021/jf010653e
  17. Lee, M.-K., Kim, H.-W., Lee, S.-H., Kim, Y. J., Jang, H.-H., Jung, H.-A., Hwang, Y.-J., Choe, J.-S. and Kim J.-B. (2016) Compositions and contents anthocyanins in blueberry (Vaccinium corymboum L.) varieties. Korean J. Environ. Agric. 35: 184-190. https://doi.org/10.5338/KJEA.2016.35.3.25
  18. Basu, P. and Maier, C. (2016) In vitro antioxidant activities and polyphenol contents of seven commercially available fruits. Pharmacognosy Res. 8: 258-264. https://doi.org/10.4103/0974-8490.188875
  19. Huang, W., Zhu, Y., Li, C., Sui, Z. and Min, W. (2016) Effect of blueberry anthocyanins malvidin and glycosides on the antioxidant properties in endothelial cells. Oxid. Med. Cell Longev. doi:10.1155/2016/1591803.
  20. Liu, L., Zuo, Z., Lu, S., Liu, A. and Liu, X. (2017) Naringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-${\kappa}B$ activation in vivo and in vitro. Iran J. Basic Med. Sci. 20: 813-821.
  21. Ganesan, K., Sukalingam, K. and Xu, B. Solanum trilobatum L. ameliorate thioacetamide-induced oxidative stress and hepatic damage in albino rats. Antioxidants (Basel). doi:10.3390/antiox6030068.
  22. Farias, J. G., Molina, V. M., Carrasco, R. A., Zepeda, A. B., Figueroa, E., Letelier, P. and Castillo, R. L. (2017) Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients doi:10.3390/nu9090966.
  23. Sonane, M., Moin, N. and Satish, A. (2017) The role of antioxidants in attenuation of Caenorhabditis elegans lethality on exposure to $TiO_2$ and ZnO nanoparticles. Chemosphere 187: 240-247. https://doi.org/10.1016/j.chemosphere.2017.08.080
  24. Li, J., Deng, R., Hua, X., Zhang, L., Lu, F., Coursey, T. G., Pflugfelder, S. C. and Li, D. Q. (2016) Blueberry component pterostilbene protects corneal epithelial cells from inflammation via anti-oxidative pathway. Sci. Rep. 6: 19408. doi:10.1038/srep19408.
  25. Bingul, I., Basaran-Kucukgergin, C., Tekkesin, M. S., Olgac, V., Dogru-Abbasoglu, S. and Uysal, M. (2013) Effect of blueberry pretreatment on diethylnitrosamine-induced oxidative stress and liver injury in rats. Environ. Toxicol. Pharmacol. 36: 529-538. https://doi.org/10.1016/j.etap.2013.05.014
  26. Zhao, M., Wang, P., Zhu, Y., Liu, X., Hu, X. and Chen, F. (2015) The chemoprotection of a blueberry anthocyanin extract against the acrylamide-induced oxidative stress in mitochondria: unequivocal evidence in mice liver. Food Funct. 6: 3006-3012. https://doi.org/10.1039/C5FO00408J