Anti-inflammatory and Antioxidant Effects of Clam Worm Extract Treated with Peptidoglycan

펩티도글리칸 처리된 갯지렁이 추출물의 항염증 및 항산화 효과

  • Kim, Se-woong (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University) ;
  • Sapkota, Mahesh (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University) ;
  • Yang, Ming (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University) ;
  • Li, Liang (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University) ;
  • Soh, Yunjo (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University)
  • 김세웅 (전북대학교 치과대학 치과약리학교실) ;
  • 삽코타마헤쉬 (전북대학교 치과대학 치과약리학교실) ;
  • 양명 (전북대학교 치과대학 치과약리학교실) ;
  • 이양 (전북대학교 치과대학 치과약리학교실) ;
  • 소윤조 (전북대학교 치과대학 치과약리학교실)
  • Received : 2017.07.21
  • Accepted : 2017.09.05
  • Published : 2017.09.30

Abstract

Peptidoglycan in inserts and mammals is well known to improve biological functions in the host's immune system. However, it is unclear how Peptidoglycan exerted its anti-inflammatory capacity especially in clam worm (Marphysa sanguinea). In this experiment, the anti-inflammatory and antioxidant effects of clam worm extract treated with (PCWE) peptidoglycan (Micrococcus luteus) in RAW264.7 cells were examined by measuring MDA, catalase, SOD, GSH-Px and inflammatory cytokines (nitric oxide, iNOS, interleukin-$1{\beta}$ and tumor necrosis factor-${\alpha}$). PCWE significantly increased the activities of catalase, SOD and GSH-Px and decreased the level of MDA. Interestingly, PCWE induced activities of SOD and GSH-Px more than clam worm extract without peptidoglycan (CWE). In addition, PCWE decreased NO production, iNOS, COX-2, TNF-${\alpha}$ and IL-$1{\beta}$ better than CWE. Taken together, these results indicate that PCWE has the potential as a natural antioxidant and a therapeutic for inflammation-related diseases.

Keywords

References

  1. Pan, W., Liu, X., Ge, F., Han, J. and Zheng, T. (2004) Perinerin, a novel antimicrobial peptide purified from the clamworm Perinereis aibuhitensis grube and its partial characterization. J. Biochem. 135: 297-304. https://doi.org/10.1093/jb/mvh036
  2. Zhou, Q., Li, M. and Xi, T. (2009) Cloning and expression of a clamworm antimicrobial peptide perinerin in Pichia pastoris. Curr. Microbiol. 58: 384-388. https://doi.org/10.1007/s00284-009-9372-4
  3. Yoshimura, A., Lien, E., Ingalls R. R., Tuomanen, E., Dziarski, R. and Golenbock, D. (1999) Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163: 1-5.
  4. Dziarski, R., Ulmer, A. J. and Gupta, D. (2000) Interactions of CD14 with components of gram-positive bacteria. Chem. Immunol. 74: 83-107.
  5. Wang, J. E., Jorgensen, P. F., Almlof, M., Thiemermann, C., Foster, S. J., Aasen, A. O. and Solberg R. (2000) Peptidoglycan and lipoteichoic acid from Staphylococcus aureus induce tumor necrosis factor alpha, interleukin 6 (IL-6), and IL-10 production in both T cells and monocytes in a human whole blood model. Infect. Immun. 68: 3965-3970. https://doi.org/10.1128/IAI.68.7.3965-3970.2000
  6. Mellroth, P., Karlsson, J. and Steiner, H. (2003) A scavenger function for a Drosophila peptidoglycan recognition protein. J. Biol. Chem. 278: 7059-7064. https://doi.org/10.1074/jbc.M208900200
  7. Zaidman-Remy, A., Herve, M., Poidevin, M., Pili-Floury, S., Kim, M. S., Blanot, D., Oh, B. H., Ueda, R., Mengin-Lecreulx, D. and Lemaitre, B. (2006) The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24: 463-473. https://doi.org/10.1016/j.immuni.2006.02.012
  8. Bischoff, V., Vignal, C., Duvic, B., Boneca, I. G., Hoffmann, J. A. and Royet, J. (2006) Down regulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog. 2: e14. https://doi.org/10.1371/journal.ppat.0020014
  9. Kurata, S. (2004) Recognition of infectious non-self and activation of immune responses by peptidoglycan recognition protein (PGRP)-family members in Drosophila. Dev. Comp. Immunol. 28: 89-95. https://doi.org/10.1016/S0145-305X(03)00121-6
  10. Mosser, D. M. (2003) The many faces of macrophage activation. J. Leukoc Biol. 73: 209-212. https://doi.org/10.1189/jlb.0602325
  11. Bystrom, J., Evans, I., Newson, J., Stables, M., Toor, I., van Rooijen, N., Crawford, M., Colville-Nash, P., Farrow, S. and Gilroy, D. W. (2008) Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood 112: 4117-4127. https://doi.org/10.1182/blood-2007-12-129767
  12. Halliwell, B. and Gutteridge, J. M. (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186: 1-85
  13. Lee, S. J., Bai, S. K., Lee, K. S., Namkoong, S., Na, H. J., Ha, K. S., Han, J. A., Yim, S. V., Chang, K., Kwon, Y. G., Lee, S. K. and Kim, Y. M. (2003) Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing $I{\kappa}B$ kinase-dependent NF-${\kappa}B$ activation. Mol. Cells 16: 97-105.
  14. Miesel, R., Murphy, M. P. and Kroeger, H. (1996) Enhanced mitochondrial radical production in patients which rheumatoid arthritis correlates with elevated levels of tumor necrosis factor alpha in plasma. Free Radical Res. 25: 161-169. https://doi.org/10.3109/10715769609149921
  15. Zhang, S., Shen, Z., Hu, G., Liu, R. and Zhang, X. (2009) Effects of endogenous glucocorticoids on allergic inflammation and T(H)1 /T(H)2 balance in airway allergic disease. Ann. Allergy Asthma Immunol. 103: 525-534. https://doi.org/10.1016/S1081-1206(10)60270-0
  16. Chinetti-Gbaguidi, G., Colin. S. and Staels, B. (2015) Macrophage subsets in atherosclerosis. Nat. Rev. Cardiol. 12: 10-17. https://doi.org/10.1038/nrcardio.2014.173
  17. Chang, H. Y., Lee, H. N., Kim, W. and Surh, Y. J. (2015) Docosahexaenoic acid induces M2 macrophage polarization through peroxisome proliferator-activated receptor ${\gamma}$ activation. Life Sci. 120: 39-47. https://doi.org/10.1016/j.lfs.2014.10.014
  18. Titos, E., Rius, B., Gonzalez-Periz, A., Lopez-Vicario, C., Moran-Salvador, E., Martinez-Clemente, M., Arroyo, V. and Claria, J. (2011) Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J. Immunol. 187: 5408-5418. https://doi.org/10.4049/jimmunol.1100225
  19. Kwon, M. G., Seo, J. S., Youn, H. J., Park, C. I., Jeong, J. M. and Bae, J. S. (2016) Effect of the polychaete antimicrobial peptide as feed additives on olive flounder and black rockfish. immune activity. JFMSE 28: 1640-1650. https://doi.org/10.13000/JFMSE.2016.28.6.1640
  20. Prasad, K., Mantha, S. V., Muir, A. D. and Westcott, N. D. (2000) Protective effect of secoisolariciresinol diglucoside against streptozotocin-induced diabetes and its mechanism. Mol. Cell Biochem. 206: 141-149. https://doi.org/10.1023/A:1007018030524
  21. Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105: 121-126.
  22. Kim, S. W., Sapkota, M., Li, L., Yang, M., Park, C. I. and Soh, Y. (2016) Anti-inflammatory and antioxidant effects of clam worm extract in macrophage RAW264.7 cells. Kor. J. Pharmacogn. 47: 150-157.
  23. Wang, L., Ming, L. X., Jie, L., Wang, Y., Jian, H. H. and Wang, M. H. (2015) Sonchus asper extract inhibits LPS induced oxidative stress and pro-inflammatory cytokine production in RAW264.7 macrophages. Nutr. Res. Pract. 9: 579-585. https://doi.org/10.4162/nrp.2015.9.6.579
  24. Tagesson, C., Kallberg, M. and Wingren, G. (1996) Urinary malondialdehyde and 8-hydroxydeoxyguanosine as potential markers of oxidative stress in industrial art glass workers. Int. Arch. Occup. Environ. Health 69: 5-13. https://doi.org/10.1007/BF02630732
  25. Cooper, E. L. (2004) Complementary and alternative medicine, when rigorous, can be science. Evid. Based Complement Alternat. Med. 1: 1-4. https://doi.org/10.1093/ecam/neh002
  26. Franzotti, E. M., Santos, C. V., Rodrigues, H. M., Mourao, R. H., Andrade, M. R. and Antoniolli, A. R. (2000) Anti-inflammatory, analgesic activity and acute toxicity of Sida cordifolia L. (Malva-branca). J. Ethnopharmacol. 72: 273-277. https://doi.org/10.1016/S0378-8741(00)00205-1
  27. Kwqamata, H., Ochiai, H., Mantani, N. and Terasawa, K. (2000) Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated RAW264.7 cells, a murine macrophage cell line. Am. J. Chin. Med. 28: 217-226. https://doi.org/10.1142/S0192415X0000026X
  28. Chiou, W. F., Chou, C. J. and Chen, C. F. (2001) Camptothecin suppresses nitric oxide biosynthesis in RAW264.7 macrophages. Life Sci. 69: 625-635. https://doi.org/10.1016/S0024-3205(01)01154-7