References
- Ameri, T., Lia, N., and Brabec, C. J., "Highly efficient organic tandem solar cells: a follow up review", Energy Environ. Sci., Vol. 6, pp. 2390-2413, 2013. https://doi.org/10.1039/c3ee40388b
- Lu, L. and Yu, L., "Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it", Adv. Mater., Vol. 26, pp. 4413-4430, 2014. https://doi.org/10.1002/adma.201400384
- Kim, K., Nam, S., Jeong, J., Lee, S., Seo, J., Han, H., and Kim, Y., "Organic solar cells based on conjugated polymers: history and recent advances", Korean J. Chem. Eng., Vol. 31, No. 7, pp. 1095-1104, 2014. https://doi.org/10.1007/s11814-014-0154-8
- Facchetti, A., "Polymer donor-polymer acceptor (all-polymer) solar cells", Mater. Today, Vol. 16, No. 4, pp. 123-132, 2013. https://doi.org/10.1016/j.mattod.2013.04.005
- Darling, S. B. and You, F., "The case for organic photovoltaics", RSC Adv., Vol. 3, pp. 17633-17648, 2013. https://doi.org/10.1039/c3ra42989j
- Heeger, A. J., "25th Anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation", Adv. Mater., Vol. 26, No. 1, pp. 10-28, 2014. https://doi.org/10.1002/adma.201304373
- Yan, J. and Saunders, B. R., "Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells", RSC Adv., Vol. 4, pp. 43286-43314, 2014. https://doi.org/10.1039/C4RA07064J
- Woo, S., Kim, W., Kim, H., Yi, Y., Lyu, H., and Kim, Y., "8.9% single-stack inverted polymer solar cells with electron-rich polymer nanolayer modified inorganic electron-collecting buffer layers", Adv. Energy Mater., Vol. 4, No. 7, pp. 1301692, 2014. https://doi.org/10.1002/aenm.201301692
- Wang, N., Chen, Z., Wei, W., and Jiang, Z., "Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments", J. Am. Chem. Soc., Vol. 135, No. 45, pp. 17060-17068, 2013. https://doi.org/10.1021/ja409881g
- Padinger, F., Rittberger, R. S., and Sariciftci, N. S., "Effects of postproduction treatment on plastic solar cells", Adv. Funct. Mater., Vol. 13, No. 1, pp. 85-88, 2003. https://doi.org/10.1002/adfm.200390011
- Nguyen, T. L., Choi, H., Ko, S., Uddin, M. A., Walker, B., Yum, S., Jeong, J., Yun, M. H., Shin, T. J., Hwang, S., Kim, J. Y., Woo, H. Y., "Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a -300 nm thick conventional single-cell device", Energy Enviorn. Sci., Vol. 7, pp. 3040-3051, 2014. https://doi.org/10.1039/C4EE01529K
- Zhang, M., Gu, Y., Guo, X., Liu, F., Zhang, S., Huo, L., Russell, T. P., and Hou, J., "Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%", Adv. Mater., Vol. 25, No. 35, pp. 4944-4949, 2013. https://doi.org/10.1002/adma.201301494
- Kim, Y., Choulis, S. A., Nelson, J., Bradley, D. D. C., Cook, S., and Durrant, J. R., "Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene", Appl. Phys. Lett., Vol. 86, pp. 063502, 2005. https://doi.org/10.1063/1.1861123
- Deng, Y., Liu, J., Wang, J., Liu, L., Li, W., Tian, H., Zhang, X., Xie, Z., Geng, Y., and Wang, F., "Dithienocarbazole and isoindigo based amorphous low bandgap conjugated polymers for efficient polymer solar cells", Adv. Mater. Vol. 26, No. 3, pp. 471-476, 2014. https://doi.org/10.1002/adma.201303586
-
Reyes-Reyes, M., Kim, K., and Carroll, D. L., "High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)
$C_{61}$ blends", Appl. Phys. Lett., Vol. 87, pp. 083506, 2005. https://doi.org/10.1063/1.2006986 - Liao, S., Jhuo, H., and Cheng, Y., "Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance", Adv. Mater., Vol. 25, No. 34, pp. 4766-4771, 2013. https://doi.org/10.1002/adma.201301476
- Shaheen, S. E., Brabec, C. J., Sariciftci, N. S., Padinger, F., Fromherz, T., and Hummelen, J. C., "2.5% efficient organic plastic solar cells", Appl. Phys. Lett., Vol. 78, pp. 841, 2001. https://doi.org/10.1063/1.1345834
- Guo, X., Zhou, N., Lou, S. J., Smith, J., Tice, D. B., Hennek, J. W., Ortiz, R. P., Navarrete, J. T. L., Li, S., Strzalka, J., Chen, L. X., Chang, R. P. H., Facchetti, A., and Marks, T. J., "Polymer solar cells with enhanced fill factors", Nat. Photonics, Vol. 7, pp. 825-833, 2013. https://doi.org/10.1038/nphoton.2013.207
- Kim, Y., Cook, S., Tuladhar, S. M., Choulis, S. A., Nelson, J., Durrant, J. R., Bradley, D. D. C., Giles, M., McCulloch, I., Ha, C. S., and Ree, M., "A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells", Nat. Mater., Vol. 5, pp. 197-203, 2006. https://doi.org/10.1038/nmat1574
- Nam, S., Seo, J., Han, H., Kim, H., Hahm, S. G., Ree, M., Gal, Y., Anthopoulos, T. D., Bradlet, D. D. C., and Kim, Y., ">10% efficiency polymer: fullerene solar cells with polyacetylene-based polyelectrolyte interlayers", Adv. Mater. Interfaces, Vol. 3, No. 23, pp. 1600415, 2016. https://doi.org/10.1002/admi.201600415
- Krebs, F. C., "Fabrication and processing of polymer solar cells: a review of printing and coating techniques", Sol. Energy Mater. Sol. Cell., Vol. 93, No. 4, pp. 394-412, 2009. https://doi.org/10.1016/j.solmat.2008.10.004
- Krebs, F. C., Gevorgyan, S. A., and Alstrup, J., "A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies", J. Mater. Chem., Vol. 19, pp. 5442-5451, 2009. https://doi.org/10.1039/b823001c
- Lee, S., Kim, H., and Kim, Y., "Influence of physical load on the stability of organic solar cells with polymer:fullerene bulk heterojunction nano layers", Curr. Photovoltaic Res., Vol. 4, No. 2, pp. 48-53, 2016. https://doi.org/10.21218/CPR.2016.4.2.048
- Sondergaard, R., Hosel, M., Angmo, D., Larsen-Olsen, T. T., and Krebs, F. C., "Roll-to-roll fabrication of polymer solar cells", Mater. Today, Vol. 15, No. 1, pp. 36-49, 2012. https://doi.org/10.1016/S1369-7021(12)70019-6
- Blankenburg, L., Schultheis, K., Schache, H., Sensfuss, S., and Schronder, M., "Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulk-heterojunction polymer solar cells", Sol. Energy Mater. Sol. Cell., Vol. 93, No. 4, pp. 476-483, 2009. https://doi.org/10.1016/j.solmat.2008.12.013
- Nam, S., Seo, J., Woo, S., Kim, W., Kim, H., Bradley, D. D. C., and Kim, Y., "Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electroncollecting buffer layers", Nat. Commun., Vol. 6, pp. 8929, 2015. https://doi.org/10.1038/ncomms9929
- Kim, Y., Nelson, J., Zhang, T., Cook, S., Durrant, J. R., Kim, H., Park, J., Shin, M., Nam, S., Heeney, M., McCulloch, I., Ha, C. S., and Bradley, D. D. C., "Distorted asymmetric cubic nanostructure of soluble fullerene crystals in efficient polymer:fullerene solar cells", ACS Nano, Vol. 3, No. 9, pp. 2557-2562, 2009. https://doi.org/10.1021/nn900798m
- Peters, C. H., Sachs-Quintana, I. T., Mateker, W. R., Heumueller, T., Rivnay, J., Noriega, R., Beiley, Z. M., Hoke, E. T., Salleo, A., and McGehee, M. D., "The mechanism of burn-in loss in a high efficiency polymer solar cell", Adv. Mater., Vol. 24, No. 5, pp. 663-668, 2012. https://doi.org/10.1002/adma.201103010
- Kim, H., Shin, M., Park, J., and Kim, Y., "Initial performance changes of polymer/fullerene solar cells by short-time exposure to simulated solar light", ChemSusChem, Vol. 3, No. 4, pp. 476-480, 2010. https://doi.org/10.1002/cssc.200900291
- Kim, H., Shin, M., Park, J., and Kim, Y., "Effect of long time annealing and incident light intensity on the performance of polymer:fullerene solar cells", IEEE Trans. Nanotechnol., Vol. 9, No. 3, pp. 400-406, 2010. https://doi.org/10.1109/TNANO.2009.2027120
- Nam, S., Woo, S., Seo, J., Kim, W. H., Kim, H., McNeill, C. R., Shin, T. J., Bradley, D. D. C., and Kim, Y., "Pronounced cosolvent effects in polymer:polymer bulk heterojunction solar cells with sulfur-rich electron-donating and imide- containing electronaccepting polymers", ACS Appl. Mater. Interfaces, Vol. 7, No. 29, pp. 15995-16002, 2015. https://doi.org/10.1021/acsami.5b04224
- Jorgensen, M., Norrman, K., Gevorgyan, S. A., Tromholt, T., Andreasen, B., and Krebs, F. C., "Stability of polymer solar cells", Adv. Mater., Vol. 24, No. 5, pp. 580-612, 2012. https://doi.org/10.1002/adma.201104187
- Nam, S., Shin, M, Kim, H., and Kim, Y., "Temperature/time-dependent crystallization of polythiophene:fullerene bulk heterojunction films for polymer solar cells", Nanoscale, Vol. 2, pp. 2384-2389, 2010. https://doi.org/10.1039/c0nr00379d
- Wang, Y., Xu, W., Zhang, J., Zhou, L., Lei, Gang, Liu, C., Lai, W., and Huang, W., "A small molecule/fullerene binary acceptor system for high-performance polymer solar cells with enhanced light-harvesting properties and balanced carrier mobility", J. Mater. Chem. A, Vol. 5, pp. 2460-2465, 2017. https://doi.org/10.1039/C6TA09530E
- Shin, M., Kim, H., Park, J., Nam, S., Heo, K., Ree, M., Ha, C. S., and Kim, Y., "Abrupt morphology change upon thermal annealing in poly(3-hexylthiophene)/soluble fullerene blend films for polymer solar cells", Adv. Funct. Mater., Vol. 20, No. 5, pp. 748-754, 2010. https://doi.org/10.1002/adfm.200901655
- Foster, S., Deledalle, F., Mitani, A., Kimura, T., Kim, K., Okachi, T., Kirchartz, T., Oguma, J., Durrant, J. R., Doi, S., and Nelson, J., "Electron collection as a limit to polymer:PCBM solar cell efficiency: effect of blend microstructure on carrier mobility and device performance in PTB7:PCBM", Adv. Energy Mater., Vol. 4, No. 14, pp. 1400311, 2014. https://doi.org/10.1002/aenm.201400311
- Nam, S., Park, S., Kim, H., Lee, J., and Kim, Y., "Strong addition effect of charge-bridging polymer in polymer:fullerene solar cells with low fullerene content", RSC Adv., Vol. 4, pp. 24914-24921, 2014. https://doi.org/10.1039/C4RA01918K
- Shin, M., Kim, H, Nam, S., Park, J., and Kim, Y., "Influence of hole-transporting material addition on the performance of polymer solar cells", Energy Environ. Sci., Vol. 3, pp. 1538-1543, 2010. https://doi.org/10.1039/c002771e
-
Pranculis, V., Ruseckas, A., Vithanage, D. A., Hedley, G. J., Samuel, I. D. W., and Gulbinas, V., "Influence of blend ratio and processing additive on free carrier yield and mobility in PTB7:
$PC_{71}BM$ photovoltaic solar cells", J. Phys. Chem. C, Vol. 120, No. 18, pp. 9588-9594, 2016. https://doi.org/10.1021/acs.jpcc.6b01548 - Han, H., Lee, H., Nam, S., Jeong, J., Lee, I., Kim, H., Ha, C. S., and Kim, Y., "Poly(3-hexylthiophene-co-benzothiadiazole)(THBT) as an electron- accepting polymer for normal and inverted type all-polymer solar cells", Polym. Chem., Vol. 4, pp. 2053-2061, 2013. https://doi.org/10.1039/c2py21144k
- Nam, S., Park, S., Seo, J., Jeong, J., Lee, S., Kim, J., Kim, H., and Kim, Y., "Influence of annealing temperature on the nanostructure and performance of polymer: Polymer solar cells", J. Korean Phys. Soc., Vol. 63, No. 7, pp. 1368-1372, 2013. https://doi.org/10.3938/jkps.63.1368
- Roehling, J. D., Baran, D., Sit, J., Kassar, T., Ameri, T., Unruh, T., Barbec, C. J., and Moule, A. J., "Nanoscale morphology of PTB7 based organic photovoltaics as function of fullerene size", Sci. Rep., Vol. 6, pp. 30915, 2016. https://doi.org/10.1038/srep30915
- Nam, S., Hahm, S. G., Han, H., Seo, J., Kim, C., Kim, H., Marder, S. R., Ree, M., and Kim, Y., "All-polymer solar cells with bulk hetero -junction films containing electron-accepting triple bondconjugated perylene diimide polymer", ACS Sustainable Chem. Eng., Vol. 4, No. 3, pp. 767-774, 2016. https://doi.org/10.1021/acssuschemeng.5b00732
- Jeong, J., Seo, J., Nam, S., Han, H., Kim, H., Anthopoulos, T. D., Bradley, D. D. C., and Kim, Y., "Significant stability enhancement in high- efficiency polymer:fullerene bulk heterojunction solar cells by blocking ultraviolet photons from solar light", Adv. Sci., Vol. 3, No. 4, pp. 1500269, 2016. https://doi.org/10.1002/advs.201500269
-
Wan, Q., Guo, X., Wang, Z., Li, W., Guo, B., Ma, W., Zhang, M., and Li, Y., "10.8% efficiency polymer solar cells based on PTB7-Th and
$PC_{71}BM$ via binary solvent additives treatment", Adv. Funct. Mater., Vol. 26, No. 36, pp. 6635-6640, 2016. https://doi.org/10.1002/adfm.201602181