References
- American Institute of Steel Construction (2005a), AISC 360-05, Specification for Structural Steel Buildings; Chicago, IL, USA.
- American Institute of Steel Construction (2005b), AISC 341-05, Seismic provisions for structural steel buildings; Chicago, IL, USA.
- American Society of Civil Engineers (2005), ASCE 7-05, minimumdesign loads for buildings and other structures; New York, NY, USA.
- American Society of Civil Engineers (2007), ASCE/SEI 41-06, Seismic Rehabilitation of Existing Buildings, Reston, VA, USA.
- Asgarian, B. and Hashemi Rezvani, F. (2012), "Progressive collapse analysis of concentrically braced frames through EPCA algorithm", J. Construct. Steel Res., 70, 127-136. https://doi.org/10.1016/j.jcsr.2011.10.022
- Fu, F. (2009), "Progressive collapse analysis of high-rise building with 3-D finite element modeling method", J. Construct. Steel Res., 65(6), 1269-1278. https://doi.org/10.1016/j.jcsr.2009.02.001
- Fu, F. (2012), "Response of a multi-storey steel composite building with concentric bracing under consecutive column removal scenarios", J. Construct. Steel Res., 70, 115-126. https://doi.org/10.1016/j.jcsr.2011.10.012
- GSA (2003), Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects; U.S. General Service Administration (U.S. GSA), Washington DC, USA.
- Hashemi Rezvani, F. and Asgarian, B. (2012), "Element loss analysis of concentrically braced frames considering structural performance criteria", Steel Compos. Struct., Int. J., 12(3), 231-248. https://doi.org/10.12989/scs.2012.12.3.231
- Hashemi Rezvani, F. and Asgarian, B. (2014), "Effect of seismic design level on safety against progressive collapse of concentrically braced frames ", Steel Compos. Struct., Int. J., 16(2), 135-156. https://doi.org/10.12989/scs.2014.16.2.135
- Hashemi Rezvani, F., Yousefi, A.M. and Ronagh, H.R. (2015), "Effect of span length on progressive collapse behaviour of steel moment resisting frames", Structures, 3, 81-89. https://doi.org/10.1016/j.istruc.2015.03.004
- Khandelwal, K. and El-Tawil, S. (2011), "Pushdown resistance as a measure of robustness in progressive collapse analysis", Eng. Struct., 33(9), 2653-2661. https://doi.org/10.1016/j.engstruct.2011.05.013
- Khandelwal, K., El-Tawil, S. and Sadek, F. (2009), "Progressive collapse analysis of seismically designed steel braced frames", J. Construct. Steel Res., 65(3), 699-708. https://doi.org/10.1016/j.jcsr.2008.02.007
- Kheyroddin, A., Gerami, M. and Mehrabi, F. (2014), "Assessment of the dynamic effect of steel frame due to sudden middle column loss", Struct. Des. Tall Special Build., 23(5), 392-402.
- Kim, J. and Kim, T. (2009), "Assessment of progressive collapseresisting capacity of steel moment frames", J. Construct. Steel Res., 65(1), 169-179. https://doi.org/10.1016/j.jcsr.2008.03.020
- Kim, H.S., Kim, J. and An, D.W. (2009), "Development of integrated system for progressive collapse analysis of building structures considering dynamic effects", Adv. Eng. Software, 40(1), 1-8. https://doi.org/10.1016/j.advengsoft.2008.03.011
- Li, J. and Hao, H. (2013), "Numerical study of structural progressive collapse using substructure technique", Eng. Struct., 52, 101-113. https://doi.org/10.1016/j.engstruct.2013.02.016
- Liu, M. (2013), "A new dynamic increase factor for nonlinear static alternate path analysis of building frames against progressive collapse", Eng. Struct., 48, 666-673. https://doi.org/10.1016/j.engstruct.2012.12.011
- Liu, M. (2015), "Pulldown Analysis for Progressive Collapse Assessment", J. Perform. Construct. Facil., 29(1), 04014027. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000459
- Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2007), OpenSees command Language manual.
- National Institute of Standard and Technology (2007), NISTIR 7396, Best practices for reducing the potential for progressive collapse in buildings; Technology administration, U.S. Department of Commerce.
- Song, B.I., Giriunas, K.A. and Sezen, H. (2014), "Progressive collapse testing and analysis of a steel frame building", J. Construct. Steel Res., 94, 76-83. https://doi.org/10.1016/j.jcsr.2013.11.002
- Szyniszewski, S. and Krauthammer, T. (2012), "Energy flow in progressive collapse of steel framed buildings", Eng. Struct., 42, 142-153. https://doi.org/10.1016/j.engstruct.2012.04.014
- Tsai, M.-H. and You, Z.-K. (2012), "Experimental evaluation of inelastic dynamic amplification factors for progressive collapse analysis under sudden support loss", Mech. Res. Commun., 40, 56-62. https://doi.org/10.1016/j.mechrescom.2012.01.011
- Unified Facilities Criteria (2005), UFC 4-023-3, Design of buildings to resist progressive collapse; Department of Defense, Washington DC, USA.
- Unified Facilities Criteria (2009), UFC 4-023-3, Design of buildings to resist progressive collapse; Department of Defense, Washington DC, USA.
- Vamvatsikos, D. and Allin Cornell, C. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141
Cited by
- Estimating the cross-sectional area of inverted-V braces required for mitigating the progressive collapse of Steel Intermediate Moment Resisting Frames vol.15, pp.8, 2017, https://doi.org/10.1080/15732479.2019.1602148