DOI QR코드

DOI QR Code

A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer

  • Ezzat, Magdy A. (Department of Mathematics, Faculty of Education, Alexandria University) ;
  • El-Bary, Alaa A. (Arab Academy for Science and Technology)
  • 투고 : 2017.05.10
  • 심사 : 2017.06.29
  • 발행 : 2017.10.10

초록

In this work, the model of magneto-thermoelasticity based on memory-dependent derivative (MDD) is applied to a one-dimensional thermal shock problem for a functionally graded half-space whose surface is assumed to be traction free and subjected to an arbitrary thermal loading. The $Lam{\acute{e}}^{\prime}s$ modulii are taken as functions of the vertical distance from the surface of thermoelastic perfect conducting medium in the presence of a uniform magnetic field. Laplace transform and the perturbation techniques are used to derive the solution in the Laplace transform domain. A numerical method is employed for the inversion of the Laplace transforms. The effects of the time-delay on the temperature, stress and displacement distribution for different linear forms of Kernel functions are discussed. Numerical results are represented graphically and discussed.

키워드

참고문헌

  1. Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., Int. J., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103
  2. Biot, M. (1955), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351
  3. Caputo, M. and Mainardi, F. (1971), "A new dissipation model based on memory mechanism", Pure Appl. Geophys., 91(1), 134-147. https://doi.org/10.1007/BF00879562
  4. Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: A review of recent literature", Appl. Mech. Rev., 51, 705-729. https://doi.org/10.1115/1.3098984
  5. Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
  6. El-Karamany, A.S. and Ezzat, M.A. (2002), "On the boundary integral formulation of thermo-viscoelasticity theory", Int. J. Eng. Sci., 40(17), 1943-1956. https://doi.org/10.1016/S0020-7225(02)00043-5
  7. Ezzat, M.A. (2011), "Thermoelectric MHD with modified Fourier's law", Int. J. Therm. Sci., 50(4), 449-455. https://doi.org/10.1016/j.ijthermalsci.2010.11.005
  8. Ezzat, M.A. (2012), "State space approach to thermoelectric fluid with fractional order heat transfer", Heat Mass Transf., 48(1), 71-82. https://doi.org/10.1007/s00231-011-0830-8
  9. Ezzat, M.A. and El-Bary, A.A. (2017), "Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories", Steel Compos. Struct., Int. J., 24(3), 297-307.
  10. Ezzat, M.A., El-Karamany, A.S. and Samaan, A.A. (2001), "Statespace formulation to generalized thermoviscoelasticity with thermal relaxation", J. Therm. Stress., 24(9), 823-846. https://doi.org/10.1080/014957301750379612
  11. Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2014), "Generalized thermo-viscoelasticity with memory-dependent derivatives", Int. J. Mech. Sci., 89, 470-475. https://doi.org/10.1016/j.ijmecsci.2014.10.006
  12. Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2015), "A novel magnetothermoelasticity theory with memory-dependent derivative", J. Electromagn. Waves Appl., 29(8), 1018-1031. https://doi.org/10.1080/09205071.2015.1027795
  13. Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2017), "Thermoelectric viscoelastic materials with memory-dependent derivative", Smart Struct. Syst., Int. J., 19(5), 539-551. https://doi.org/10.12989/sss.2017.19.5.539
  14. Ezzat, M.A. and Fayik, M. (2011), "Fractional order theory of thermoelastic diffusion", J. Therm. Stress., 34(8), 851-872. https://doi.org/10.1080/01495739.2011.586274
  15. Ezzat, M.A. and Youssef, H.M. (2010), "Stokes' first problem for an electro-conducting micropolar fluid with thermoelectric properties", Can. J. Phys., 88(1), 35-48. https://doi.org/10.1139/P09-100
  16. Hetnarski, R.B. and Ignaczak, J. (1999), "Generalized thermoelasticity", J. Therm. Stress., 22(4-5), 451-476. https://doi.org/10.1080/014957399280832
  17. Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Compu. Appli.Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
  18. Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates", J. Am. Ceram. Soc., 40(1), 162-169.
  19. Kumar, R. and Sharma, P. (2017), "Analysis of plane waves in anisotropic magneto-piezothermoelastic diffusive body with fractional order derivative", J. Solids Mech., 9(1), 86-99.
  20. Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions in a transversely isotropic magnetothermoelastic with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40(13), 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061
  21. Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., Int. J., 22(3), 567-587. https://doi.org/10.12989/scs.2016.22.3.567
  22. Lee, W., Stinton, D., Berndt, C., Erdogan, F., Lee, Y. and Mutasim, Z. (1996), "Concept of functionally graded materials for advanced thermal barrier coating applications", J. Am. Ceram. Soc., 79(12), 3003-3012. https://doi.org/10.1111/j.1151-2916.1996.tb08070.x
  23. Lord, H. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  24. Naebe, M. and Shirvanimoghaddam, K. (2016), "Functionally graded materials: A review of fabrication and properties", Appl. Mater. Today., 5, 223-245. https://doi.org/10.1016/j.apmt.2016.10.001
  25. Podlubny, I. (1999), Fractional Differential Equations, Academic Press, New York, NY, USA.
  26. Povstenko, Y. (2011), "Fractional Cattaneo-type equations and generalized thermoelasticity", J. Therm. Stress., 34(2), 97-114. https://doi.org/10.1080/01495739.2010.511931
  27. Praveen, G., Chin, C. and Reddy, J. (1999), "Thermoelastic analysis of functionally graded ceramic-metal cylinder", J. Eng. Mech., 125(11), 1259-1267. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:11(1259)
  28. Sherief, H.H., El-Said, A. and Abd El-Latief, A. (2010), "Fractional order theory of thermoelasticity", Int. J. Solids Struct., 47(2), 269-275. https://doi.org/10.1016/j.ijsolstr.2009.09.034
  29. Shirvanimoghaddam, K., Hamim, S., Akbari, M., Fakhrhoseini, M., Kayyam, H., Paksaeresht, A., Ghasali, E. and Zabet, M. (2016), "Carbon fiber reinforced metal matrix composites: Fabrication processes and properties", Compos. A., 92, 70-96.
  30. Shirvanimoghaddam, K., Abolhasani, M., Li, Q., Kayyam, H. and Naebe, M. (2017), "Cheetah skin structure: A new approach for carbon-nano-patterning of carbon nanotubes", Compos. A., 95, 304-314. https://doi.org/10.1016/j.compositesa.2017.01.023
  31. Tsukamoto, H. (2010), "Design of functionally graded thermal barrier coatings based on a nonlinear micromechanical approach", Comput. Mater. Sci., 50(2), 429-436. https://doi.org/10.1016/j.commatsci.2010.08.035
  32. Wang, J.L. and Li, H.F. (2011), "Surpassing the fractional derivative: Concept of the memory-dependent derivative", Compu. Math. Appl., 62(3), 1562-1567. https://doi.org/10.1016/j.camwa.2011.04.028
  33. Willert, E. and Popov, V.L. (2017), "The oblique impact of a rigid sphere on a power-law graded elastic half-space", Mech. Mater., 109, 82-87. https://doi.org/10.1016/j.mechmat.2017.03.019
  34. Yu, Y.J., Tian, X.G. and Lu, T.J. (2013), "Fractional order generalized electro-magneto-thermo-elasticity", Eur. J. Mech. A/Solids, 42,188-202. https://doi.org/10.1016/j.euromechsol.2013.05.006
  35. Yu, Y.J, Hu, W. and Tian, X-G. (2014), "A novel generalized thermoelasticity model based on memory-dependent derivative", Int. J. Eng. Sci., 81, 123-134. https://doi.org/10.1016/j.ijengsci.2014.04.014
  36. Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to timedependent heat flux", Steel Compos. Struct., Int. J., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909
  37. Zhang, D.G. (2013), "Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory", Compos. Struct., 100, 121-126. https://doi.org/10.1016/j.compstruct.2012.12.024

피인용 문헌

  1. Fractional order thermoelastic wave assessment in a two-dimension medium with voids vol.21, pp.1, 2020, https://doi.org/10.12989/gae.2020.21.1.085
  2. Modeling of GN type III with MDD for a thermoelectric solid subjected to a moving heat source vol.23, pp.4, 2017, https://doi.org/10.12989/gae.2020.23.4.393
  3. Memory-dependent derivative approach on magneto-thermoelastic transversely isotropic medium with two temperatures vol.15, pp.1, 2020, https://doi.org/10.1186/s40712-020-00122-2
  4. Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2017, https://doi.org/10.12989/scs.2021.38.2.141
  5. Memory response on wave propagation in a thermoelastic plate due to moving band-type thermal loads and magnetic field vol.49, pp.2, 2021, https://doi.org/10.1080/15397734.2019.1672558
  6. Transient memory response of a thermoelectric half-space with temperature-dependent thermal conductivity and exponentially graded modulii vol.38, pp.4, 2021, https://doi.org/10.12989/scs.2021.38.4.447
  7. A study on thermo-elastic interactions in 2D porous media with-without energy dissipation vol.38, pp.5, 2017, https://doi.org/10.12989/scs.2021.38.5.523
  8. Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading vol.39, pp.2, 2021, https://doi.org/10.12989/scs.2021.39.2.215
  9. Field equations and corresponding memory responses for a fiber-reinforced functionally graded medium due to heat source vol.49, pp.4, 2017, https://doi.org/10.1080/15397734.2019.1693897
  10. Transient disturbances in a nonlocal functionally graded thermoelastic solid under Green-Lindsay model vol.31, pp.7, 2017, https://doi.org/10.1108/hff-08-2020-0514
  11. Analytical solutions of the temperature increment in skin tissues caused by moving heating sources vol.40, pp.4, 2017, https://doi.org/10.12989/scs.2021.40.4.511
  12. Wave propagation analysis of porous asphalts on account of memory responses vol.49, pp.7, 2017, https://doi.org/10.1080/15397734.2020.1712553