References
- Abdollahi, D., Ahdiaghdam, S., Ivaz, K. and Shabani, R. (2016), "A theoretical study for the vibration of a cantilever microbeam as a free boundary problem", Appl. Math. Model., 40(3), 1836-1846. https://doi.org/10.1016/j.apm.2015.09.041
- Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
- Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024
- Chen, X. and Meguid, S.A. (2015), "On the parameters which govern the symmetric snap-through buckling behavior of an initially curved microbeam", Int. J. Solids Struct., 66, 77-87. https://doi.org/10.1016/j.ijsolstr.2015.04.011
- Dehrouyeh-Semnani, A.M., Dehrouyeh, M., Torabi-Kafshgari, M. and Nikkhah-Bahrami, M. (2015), "An investigation into sizedependent vibration damping characteristics of functionally graded viscoelastically damped sandwich microbeams", Int. J. Eng. Sci., 96, 68-85. https://doi.org/10.1016/j.ijengsci.2015.07.008
- Ebrahimi, F. and Salari, E. (2015), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeam in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
- Ghadiri, M. and Shafiei, N. (2016), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronaut., 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003
- Ghayesh, M.H., Farokhi, H. and Hussain, S.H. (2016), "Viscoelastically coupled size-dependent dynamics of microbeams", Int. J. Eng. Sci., 109, 243-255. https://doi.org/10.1016/j.ijengsci.2016.09.004
- Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017), "Vibration analysis of geometrically imperfect three-layered sheardeformable microbeams", Int. J. Mech. Sci., 122, 370-383. https://doi.org/10.1016/j.ijmecsci.2017.01.001
- Ilkhani, M.R. and Hosseini-Hashemi, S.H. (2016), "Size dependent vibro-buckling of rotating beam based on modified couple stress theory", Compos. Struct., 143, 75-83. https://doi.org/10.1016/j.compstruct.2016.02.013
- Jia, X.L., Ke, L.L., Feng, C.B., Yang, J. and Kitipornchai, S. (2015), "Size effect on the free vibration of geometrically nonlinear functionally graded micro-beam under electrical actuation and temperature change", Compos. Struct., 133, 1137-1148. https://doi.org/10.1016/j.compstruct.2015.08.044
- Kolahch, R. and Moniribidgoli, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech. - Engl Ed., 372, 265-274.
- Kolahchi, R., Rabani Bidgoli, M., Beygipoor, Gh. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Tech., 29, 3669-3677 . https://doi.org/10.1007/s12206-015-0811-9
- Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
- Kolahchi, R., Safari, M. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
- Kolahchi, R., Zarei, M.Sh., Hajmohammad, M.H. and Naddaf Oskouei, A. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Liu, Y.P. and Reddy, J.N. (2011), "A nonlocal curved beam model based on a modified couple stress theory", Int. J. Struct. Stab. Dyn., 11(3), 495-512.
- Shafiei, N., Mousavi, A. and Ghadiri, M. (2016), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory an GDQEM", Compos. Struct. 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024
- Shen, H.Sh. and Zhang, Ch.L. (2011), "Nonlocal beam model for nonlinear analysis of carbon nanotubes on elastomeric substrates", Comput. Mat. Sci., 50(3), 1022-1029. https://doi.org/10.1016/j.commatsci.2010.10.042
- Simsek, M. (2011), "Forced vibration of an embedded singlewalled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., Int. J., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
- Simsek, M. (2014), "Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory", Compos. Part B: Eng., 56, 621-628. https://doi.org/10.1016/j.compositesb.2013.08.082
- Simsek, M. (2015), "Size dependent nonlinear free vibration of an axially functionally graded AFG microbeam using He's variational method", Compos. Struct., 131, 207-214. https://doi.org/10.1016/j.compstruct.2015.05.004
- Tang, M., Ni, Q., Wnag, L., Luo, Y. and Wang, Y. (2014), "Sizedependent vibration analysis of a microbeam in flow based on modified couple stress theory", Int. J. Eng. Sci., 85, 20-30. https://doi.org/10.1016/j.ijengsci.2014.07.006
- Togun, N. and Bagdatli, S.M. (2016), "Size dependent nonlinear vibration of the tensioned nanobeam based on the modified couple stress theory", Compos. Part B: Eng., 97, 255-262. https://doi.org/10.1016/j.compositesb.2016.04.074
- Wang, L., Xu, Y.Y. and Ni, Q. (2013), "Size-dependent vibration analysis of three-dimensional cylindrical microbeams based on modified couple stress theory: A unified trestment", Int. J. Eng. Sci., 68, 1-10. https://doi.org/10.1016/j.ijengsci.2013.03.004
- Wang, L., Liu, W.B. and Dai, H.L. (2015), "Dynamics and instability of current-carrying microbeams in a longitudinal magnetic field", Physica E, 66, 87-92. https://doi.org/10.1016/j.physe.2014.10.010
- Yang, W.D., Fang, C.Q. and Wang, X. (2017), "Nonlinear dynamic characteristics of FGCNTs reinforced microbeam with piezoelectric layer based on unifying stress-strain gradient", Compos. Part B: Eng., 111, 372-386. https://doi.org/10.1016/j.compositesb.2016.11.058
- Zamanian, M. and Karimiyan, A. (2015), "Analysis of the mechanical behavior of a doubled microbeam configuration under electrostatic actuation", Int. J. Mech. Sci., 93, 82-92. https://doi.org/10.1016/j.ijmecsci.2015.01.011
- Zenkour, A.M. and Abouelregal, A.E. (2016), "Thermoelastic interaction in functionally graded nanobeams subjected to timedependent heat flux", Steel Compos. Struct., Int. J., 18(4), 909-924.
- Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method", Compos. Struct., 120, 189-199. https://doi.org/10.1016/j.compstruct.2014.10.009
Cited by
- An analytical study on the size dependent longitudinal vibration analysis of thick nanorods vol.5, pp.7, 2018, https://doi.org/10.1088/2053-1591/aacf6e
- On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes vol.38, pp.5, 2017, https://doi.org/10.12989/scs.2021.38.5.533