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ON THE SOLUTIONS OF THE PROBLEM OF VISCOUS

FLOW OVER SHRINKING SHEET
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Abstract. In this paper, we explain how the exact closed-form solutions

of the classical problems of viscous fluid flow over a heated stretching plate
and shrinking sheet can be obtained by a reliable method.
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1. Introduction

The problem of the layer flow of a viscous incompressible fluid comes in three
distinct models. The first model is induced by the stretching sheet was examined
by Crane [1], where under suitable assumptions, the first model can be reduced
to the solution of the well-known nonlinear third-order differential equation:

µy′′′ + yy′′ − (y′)
2
= 0, 0 < x <∞, (1)

subject to the boundary conditions

y(0) = 0, y′(0) = ν0, y
′(x) → 0 as x→ ∞, (2)

where µ is a constant and ν0 ≥ 0 is the coefficient of kinematic velocity.
The exact solution in exponential forms of this boundary value problem was
originally proposed by Crane [1].
Recently, an exact solution of this boundary value problem in an explicit form
was given by Aziz and Mahomed [2] using the compatibility and generalized
group method.
However, in the study of the second model of flow due to a shrinking sheet
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with suction, which reduces to the well-known nonlinear third-order differential
equations [3]

y′′′ +myy′′ − (y′)
2
= 0, 0 < x <∞, (3)

subject to the boundary conditions

y(0) = s, y′(0) = −1, y′(x) → 0 as x→ ∞, (4)

where m = 1 when the sheet shrinks in the x direction only, where m = 2 when
the sheet shrinks axisymmetrically.

The authors [3] presented a special exact solution when s =
√

6
2m−1 as y(x) =

s2

x+s .

A new second order slip velocity model was proposed by Wu [4] as

y′′′ + yy′′ − (y′)
2
= 0, 0 < x <∞, (5)

subject to the boundary conditions

y(0) = s, y′(0) = −1 + γy′′(0) + δy′′′(0), y′(x) → 0 as x→ ∞, (6)

where γ > 0 is the first order velocity slip parameter and δ < 0 is the second
order velocity slip parameter. In [5], the authors have considered Prs.(5)-(6)
and have presented the solution as y(x) = a + be−βx to this problem with the
newly proposed Wu’s slip velocity model, where the constants a, b and β are
determined by the wall mass transfer parameter s, γ > 0 and δ < 0.
Various analytical approximations methods have also been proposed to solve
these problems [6, 7] and see the references therein.
In general, there is no evidence of understanting in these explained solutions.
The purpose of this paper is to overcome the general difficulty and then present
the exact solutions of Prs.(1)-(2), (3)-(4) and (5)-(6) using a reliable method.

2. The exact solutions

The most important feature of the proposed method is that it reduces these
type of nonlinear ordinary differential equations into new equations that can
be easily handled. For illustration, the above problems will be discussed to
emphasize the use of the proposed method.

2.1. The Crane’s Model [1]. We begin our method by considering the Crane’s
model.
First, differentiating Eq.(1) with respect to x, we get

µy(4) − y′y′′ + yy′′′ = 0 (7)

and from Eq.(1), we have

y =
y′2 − µy′′′

y′′
. (8)
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Substituting Eq.(8) into Eq.(7) to get

µy(4) − y′y′′ − µ
(y′′′)2

y′′
+
y′′′

y′′
(y′)2 = 0, (9)

or

µ

(
y(4) − (y′′′)2

y′′

)
− y′y′′ +

y′′′

y′′
(y′)2 = 0. (10)

Dividing both sides of Eq.(10) by (y′′)2, we obtain

µ

(
y(4)

(y′′)2
− (y′′′)2

(y′′)3

)
− y′

y′′
+

y′′′

(y′′)3
(y′)2 = 0. (11)

We next use the following transformations [8]:

z(η) = y′′(x) and η = y′(x). (12)

By the chain rule, we have

z′(η) =
dz

dη
=
y′′′

y′′
(13)

and

z′′(η) =
d2z

dη2
=

y(4)

(y′′)2
− (y′′′)2

y′′3
. (14)

The substitution of Eqs.(12)-(14) into Eq.(10) yields

µz2(η)z′′(η)− ηz(η) + η2z′(η) = 0, 0 < η < ν0, (15)

that is, Eq.(1) can be transformed into this new equation.
This equation can be easily solved using its characteristic polynomial. In a
parallel manner as in the Cauchy-Euler equation, a trial solution z = ηr may
be used to solve this equation. Thus it is possible to get exact solutions to this
differential equation. For this, we need the following lemma.

Lemma 2.1. For the general nonlinear differential equation

αz2z′′ + βηz + γη2z′ = 0, (16)

where α > 0, β and γ are constants, we have

(1) If β + 3
2γ < 0, then

z = a1η
3
2 , η > 0, (17)

where a1 = ±
√
− 4

3α (β + 3
2γ).

(2) If β + 3
2γ > 0, then

z = a2(−η)
3
2 , η < 0, (18)

where a2 = ±
√

4
3α (β + 3

2γ).

(3) If β + γ = 0, then all solutions are of the form
• For η > 0 and γ > 0, z = a3η, where a3 is an arbitrary constant.

• For η > 0 and γ < 0, z = a3η and z = a4η
3
2 , where a4 = ±

√
− 2γ

3α .
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• For η < 0 and γ > 0, z = a3η and z = a5(−η)
3
2 , where a5 = ±

√
2γ
3α .

• For η < 0 and γ < 0, z = a3η.

Proof. Let’s start off by assuming that β + 3
2γ < 0 and all solutions are of the

form

z(η) = aηr, for η > 0, (19)

where a, r ∈ R are two constants to be determined.
Differentiating, we have:

z′(η) = arηr−1, z′′(η) = ar(r − 1)ηr−2. (20)

Substituting into the original equation, we have

a2αr(r − 1)η3r−2 + βηr+1 + γrηr+1 = 0. (21)

The solution z(η) may be found by setting 3r − 2 = r + 1, that is r = 3
2 .

Hence,
3

4
a2α+ β +

3

2
γ = 0, (22)

and a = ±
√
− 4

3α (β + 3
2γ) = a1.

Now for β + 3
2γ > 0, plug

z(η) = a(−η)r, for η < 0 (23)

into the differential equation to get

3

4
a2α− β − 3

2
γ = 0. (24)

Thus a = ±
√

4
3α (β + 3

2γ) = a2.

So solutions will be of these forms provided r = 3
2 .

For the rest parts when β + γ = 0 the proof is similar. �

Applying Lemma 2.1 to Eq.(15), we obtain

z(η) = aη, (25)

where α = µ, β = −γ = −1 and a is an arbitrary constant.
Returning to the original dependent variable y(x) to get

y′′(x) = ay′(x). (26)

Thus

y′ = ay + b. (27)

Consequently, the solution is given by

y = − b

a
+ ceax, (28)
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where b and c are two constants of integration.
Thus, it is required to find a, b and c by using the given boundary conditions.
For y(0) = 0 and y′(0) = ν0, we have b = ν0 and c = ν0

a . Thus

y = −ν0
a

+
ν0
a
eax. (29)

We must now determine a by using the remaining boundary condition y′(x) → 0
as x→ ∞.
Substituting Eq.(29) into Eq.(1), we obtain a = ±

√
ν0
µ . Thus a = −

√
ν0
µ is

suitable for this condition.
Accordingly, the exact solution of Pr.(1)-(2) is therefore given as

y =
√
ν0µ

(
1− e

−
√

ν0
µ x
)
, (30)

which is the same exact solution that was obtained by Crane [1].

2.2. The flow due to a shrinking sheet with suction [3]. Consider Pr.(3)-
(4).
Proceeding as before, Eq.(3) reduces to the new equation

z2(η)z′′(η) + (m− 2)ηz(η) + η2z′(η) = 0, −1 < η < 0, (31)

which we can solve by Lemma 2.1, where α = 1, β = m− 2 and γ = 1 obtain,

z(η) = a(−η)r, −1 < η < 0. (32)

where a = ±
√

4m−2
3 and r = 3

2 . Then the solution to the differential equation

is,

z(η) = a(−η) 3
2 , a = ±

√
4m− 2

3
. (33)

Returning to the original dependent variable y(x) to get

y′′ = a(−y′) 3
2 . (34)

Thus

y′ =
−4

(ax+ b)2
, (35)

where b is a constant of integration.
Consequently, the solution is given by

y =
4

a

1

ax+ b
+ c. (36)

Note that the substitution of this solution into the original equation leads to
c = 0.



510 L. Bougoffa and A.M. Wazwaz

Thus, it is required to find a and b by the given boundary conditions y(0) = s

and y′(0) = −1, we obtain b = ±2 and s =
√

6
2m−1 . Thus

y =
4√
4m−2

3

1√
4m−2

3 x+ 2
=

s2

x+ s
. (37)

2.3. The problem with a second order slip flow model [4, 5]. In Pr.(5)-
(6) two cases are necessary due to the presence of the unknown parameters in
this model.

2.3.1. −1 + γy′′(0) + δy′′′(0) > 0. Proceeding as before we get y = − b
a + ceax.

The substitution of this solution into Eq. (1) with the application of boundary
conditions (6) give

a = −
√
b, − b

a
+ c = s, c = −−1 + γy′′(0) + δy′′′(0)√

b
, (38)

that is

a = −
√
b, c = s−

√
b, c = −−1 + γy′′(0) + δy′′′(0)√

b
. (39)

Accordingly, the exact solution of Pr.(5)-(6) is therefore given as

y = s+
−1 + γy′′(0) + δy′′′(0)√

b
− −1 + γy′′(0) + δy′′′(0)√

b
e−

√
bx. (40)

Setting 0 < β =
√
b, we find

y′(0) = −cβ, y′′(0) = cβ2, y′′′(0) = −cβ3, where c = s− β. (41)

Thus β > 0 must satisfy the following algebraic equation

δβ4 − (γ + δs)β3 + (γs− 1)β2 + sβ − 1 = 0. (42)

Consequently, the solution is determined by the wall mass transfer parameter s,
the first order slip parameter γ and the second order slip parameter δ and the
only positive roots β > 0 of this algebraic equation.

2.3.2. −1+γy′′(0)+ δy′′′(0) < 0. Proceeding as before, a special exact solution
can be obtained when

s =
√
−6(1 + γy′′(0) + δy′′′(0)) (43)

as follows

y(x) =
4

a(x+ b)
, (44)

where

a = ±
√

2

3
, b = ± 2√

−(−1 + γy′′(0) + δy′′′(0))
. (45)

Thus

y′′(0) = −
√

2

3
(−1 + γy′′(0) + δy′′′(0))

√
−(−1 + γy′′(0) + δy′′′(0)) (46)
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and
y′′′(0) = (−1 + γy′′(0) + δy′′′(0))2. (47)

Setting β =
√
−(−1 + γy′′(0) + δy′′′(0)). Thus the application of the boundary

condition y′(0) = −1 + γy′′(0) + δy′′′(0) yields to

δβ4 −
√

2

3
γβ3 − β2 − 1 = 0. (48)

Consequently, the solution is determined by the parameters s, γ, δ and the only
positive roots β > 0 of this algebraic equation.

3. Conclusion

In this paper, we have considered three models of viscous flow over shrinking
sheet. We have demonstrated that the closed-form solutions of these problems
can be obtained in a straightforward manner by a direct method. This method
is completely different from the one presented in the literature. Therefore, it can
be regarded as a new technique to obtain the exact solutions of the viscous flow
induced by a shrinking sheet.
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