ON THE MODAL OPERATORS OVER THE GENERALIZED INTERVAL VALUED INTUITIONISTIC FUZZY SETS

EZZATALLAH BALOUI JAMKHANEH*

Abstract

Interval valued intuitionistic fuzzy sets (IVIFSs) is widely used to model uncertainty, imprecise, incomplete and vague information. In this paper, newly defined modal operators over an extensional generalized interval valued intuitionistic fuzzy sets $\left(G I V I F S_{B} s\right)$ are proposed. Some of the basic properties of the new operators are discussed and few theorems were proved. The actual contribution in this paper is to discuss ten operators on GIVIFS S_{B}.

AMS Mathematics Subject Classification : 65H05, 65F10.
Key words and phrases : Generalized interval valued intuitionistic fuzzy sets, intuitionistic fuzzy sets, modal operators.

1. Introduction

Atanassov (1986) introduced the concept of intuitionistic fuzzy sets (IFSs), which is a generalization of fuzzy sets and defined new operations on IFSs. The theory of intuitionistic fuzzy sets has meaningful applications in many fields. In IFS, each element is assigned by membership and non-membership degrees, where the sum of the two degrees is between zero and one. However in reality, it may not always be true that the degree of membership and degree of nonmembership of an element in IFS be real numbers. Therefore, a generalization of IFS was introduced by Atanassov and Gargov (1989) as interval valued intuitionistic fuzzy sets (IVIFSs) which its fundamental characteristic is that the values of it membership and non-membership degree are intervals rather than exact numbers. Atanassov (1994) introduced operators over interval valued intuitionistic fuzzy sets. In research literature, over the IFSs and IVIFSs different operators from modal, topological, level, negation and other types are defined. For example: topological operators (Atanassov (1986, 1989, 2001)); modal operators (Atanassov (2004)); different forms of negation operation (Atanassov and

[^0]Dimitrov (2008)); relations between intuitionistic fuzzy negations and intuitionistic fuzzy modal operators (Hinde and Atanassov (2008)); some operators of IFS of root type (Srinivasan and Palaniappan (2012)) and etc. These operators not only important from the theoretical view but they are also important from point of view of applications.
$\mathrm{Xu}(2007 \mathrm{a}, 2007 \mathrm{~b})$ developed some arithmetic aggregation operators and some geometric aggregation operators of IVIFS for decision making. Wang and Liu (2013) considered the interval valued intuitionistic fuzzy hybrid weighted averaging operator based on Einstein operation and its application to decision making. They defined generalized interval valued intuitionistic fuzzy relation (GIVIF) with some results. Bhowmik and Pal $(2009,2010)$ defined generalized interval valued intuitionistic fuzzy sets (GIVIFSs). Bhowmik and Pal (2012) defined two composite relations, four types of reflexivity and irreflexivity of GIVIFSs with some of their properties. Chen et al. (2012), Yue (2011) and Li (2010a, 2010b, 2011) presented methods for multi-criteria fuzzy decision making based on IVIFS. Mondal and Samanta (2011) studied the topological properties and the category of topological spaces of IVIFSs. Zhang et al. (2011) introduced a generalized interval valued intuitionistic fuzzy sets. GIVIFS play a significant role in different science. One motivation for our study has been the significant performance achieved by the use of IVIFSs implications in some applications. For example, some recent applications of IVIFSs have been: medical diagnosis (Ahn et al. (2011)); multi-attribute decision making (Liu et al., (2012)); evaluation about the performance of E-government (Zhang et al. (2014)); reliability analysis (Tyagi, (2014)); medical diagnosis using logical operators (Pathinathan et al. (2015)) wind energy technology selection (Onar, (2015)); Kahraman et al. (2016)); decision and game theory in management (Li, (2013)) algorithm for solving an assignment model (Jose et al.(2013)); select supplier (Xiao and Wei (2011)); pattern recognition (Zhang et al. (2013)); exploitation investment evaluation (Qi et al. (2013)).

Baloui Jamkhaneh and Nadarajah (2015) considered a new generalized intuitionistic fuzzy sets $\left(G I F S_{B}\right)$ and introduced some operators over $G I F S_{B}$. Shabani and Baloui Jamkhaneh (2014) introduced a new generalized intuitionistic fuzzy number based on generalization of the IFS related to Baloui Jamkhaneh and Nadaraja (2015). Recently, suitable means were defined by Baloui Jamkhaneh (2015), called generalized interval valued intuitionistic fuzzy sets (GIVIFS S_{B}). In fact, all IVIFSs are GIVIFSs but all GIVIFSs are not IVIFSs. By analogy we shall introduce the some of operators (as $D_{\alpha}(A), F_{\alpha, \beta}(A), G_{\alpha, \beta}(A)$, $\left.J_{\alpha, \beta}(A), d_{\alpha}(A), f_{\alpha, \beta}(A), g_{\alpha, \beta}(A), j_{\alpha, \beta}(A), H_{\alpha, \beta}(A), h_{\alpha, \beta}(A)\right)$ over $G I V I F S_{B}$ and we will discuss their properties. Some of these properties are the following: i) All these operators are $\operatorname{GIVIFS}_{B}$, ii) All these operators are increasing relative to α, iii) All these operators are decreasing relative to β, iv) $D_{0}(A)=F_{0,1}(A)=d_{1}(A)=\overline{f_{1,0}(A)}=H_{1,1}(A)=\overline{J_{1,1}(A)}=\square A$, v) $D_{1}(A)=F_{1,0}(A)=J_{1,1}(A)=d_{0}(A)=\overline{f_{0,1}(A)}=\overline{h_{1,1}(A)}=\diamond A$ and etc.

The originality of this study comes from the fact that, there was no previous work introduce operators for $G I V I F S_{B} s$. This paper is organized as follows: In Section 2, we briefly introduce IFS and it generalizes. In Section 3 define operators over generalized interval valued intuitionistic fuzzy sets. The paper is concluded in Section 4.

2. Preliminaries

In this section, we give some basic definition. Let X be a non empty set.
Definition 2.1. (Atanassov,1986) An IFS A in X is defined as an object of the form $A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle: x \in X\right\}$ where the functions $\mu_{A}: X \rightarrow[0,1]$ and $\nu_{A}: X \rightarrow[0,1]$ denotes the degree of membership and non-membership functions of A, respectively and $0 \leq \mu_{A}(x)+\nu_{A}(x) \leq 1$ for each $x \in X$.

Definition 2.2. (Atanassov \& Gargov, 1989) Interval value intuitionistic fuzzy sets (IVIFS) A in X, is defined as an object of the form $A=\left\{\left\langle x, M_{A}(x), N_{A}(x)\right\rangle \mid x \in\right.$ $X\}$ where the functions $M_{A}(x): X \rightarrow[I]$ and $N_{A}(x): X \rightarrow[I]$, denote the degree of membership and degree of non-membership of A respectively, where $M_{A}(x)=\left[M_{A L}(x), M_{A U}(x)\right], N_{A}(x)=\left[N_{A L}(x), N_{A U}(x)\right], 0 \leq M_{A U}(x)+$ $N_{A U}(x) \leq 1$ for each $x \in X$.
Definition 2.3. (Baloui Jamkhaneh \& Nadarajah (2015)) Generalized intuitionistic fuzzy sets $\left(G I F S_{B}\right) \mathrm{A}$ in X, is defined as an object of the form $A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle: x \in X\right\}$ where the functions $\mu_{A}: X \rightarrow[0,1]$ and $\nu_{A}: X \rightarrow[0,1]$, denote the degree of membership and degree of non-membership functions of A respectively, and $0 \leq \mu_{A}(x)^{\delta}+\nu_{A}(x)^{\delta} \leq 1$ for each $x \in X$ and $\delta=n$ or $\frac{1}{n}, n=1,2, \cdots, N$.
Definition 2.4. Let $[I]$ be the set of all closed subintervals of the interval $[0,1]$ and $M_{A}(x)=\left[M_{A L}(x), M_{A U}(x)\right] \in[I]$ and $N_{A}(x)=\left[N_{A L}(x), N_{A U}(x)\right] \in[I]$ then $N_{A}(x) \leq M_{A}(x)$ if and only if $N_{A L}(x) \leq M_{A L}(x)$ and $N_{A U}(x) \leq M_{A U}(x)$.

Definition 2.5. Generalized interval valued intuitionistic fuzzy sets (GIVIFS S_{B}) A in X , is defined as an object of the form $A=\left\{\left\langle x, M_{A}(x), N_{A}(x)\right\rangle: x \in X\right\}$ where the functions $M_{A}(x): X \rightarrow[I]$ and $N_{A}(x): X \rightarrow[I]$, denote the degree of membership and degree of non-membership of A respectively, and $M_{A}(x)=$ $\left[M_{A L}(x), M_{A U}(x)\right], N_{A}(x)=\left[N_{A L}(x), N_{A U}(x)\right]$, where $0 \leq M_{A U}(x)^{\delta}+N_{A U}(x)^{\delta} \leq$ 1 , for each $x \in X$ and $\delta=n$ or $\frac{1}{n}, n=1,2, \cdots, N$. The collection of all $\operatorname{GIVIF}_{B}(\delta)$ is denoted by $\operatorname{GIVIFS}_{B}(\delta, X)$.

Definition 2.6. The degree of non-determinacy (uncertainty) of an element $x \in X$ to the $G I V I F S_{B} \mathrm{~A}$ is defined by

$$
\begin{gathered}
\pi_{A}(x)=\left[\pi_{A L}(x), \pi_{A U}(x)\right]=\left[\left(1-M_{A U}(x)^{\delta}-N_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\right. \\
\left.\left(1-M_{A L}(x)^{\delta}-N_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right] .
\end{gathered}
$$

Definition 2.7. For every GIVIFS $S_{B} A=\left\{\left\langle x, M_{A}(x), N_{A}(x)\right\rangle: x \in X\right\}$, we define the modal logic operators necessity and possibility.
The Necessity measure on A:

$$
\square A=\left\{\left\langle x,\left[M_{A L}(x), M_{A U}(x)\right],\left[\left(1-M_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(1-M_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]\right\rangle: x \in X\right\},
$$

The Possibility measure on A:

$$
\diamond A=\left\{\left\langle x,\left[\left(1-N_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(1-N_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right],\left[N_{A L}(x), N_{A U}(x)\right]\right\rangle: x \in X\right\} .
$$

Definition 2.8. For every GIVIFS $S_{B} A=\left\{\left\langle x, M_{A}(x), N_{A}(x)\right\rangle: x \in X\right\}$, two analogues of the topological operators defined over the GIVIFSs:
The operator closure C:

$$
C(A)=\left\{\left\langle x, \max _{y \in X} M_{A}(y), \min _{y \in X} N_{A}(y)\right\rangle: x \in X\right\}
$$

The operator intersection I:

$$
I(A)=\left\{\left\langle x, \min _{y \in X} M_{A}(y), \max _{y \in X} N_{A}(y)\right\rangle: x \in X\right\}
$$

3. The operators of $G I V I F S_{B}$

Here, we will introduce new operators over the GIVIFS $_{B}$ which extend some operators in the research literature related to IVIFSs. Let X is a non-empty finite set, $\lambda=\frac{N_{A U}(x)^{\delta}-N_{A L}(x)^{\delta}}{M_{A U}(x)^{\delta}-M_{A L}(x)^{\delta}}$ and $A=\left\{\left\langle x, M_{A}(x), N_{A}(x)\right\rangle: x \in X\right\}$ is a GIVIF $_{B}$.

3.1. The first group operators.

Definition 3.1. Let $\alpha=\frac{1}{1+\lambda}$ and $A \in \operatorname{GIVIF}_{B}$, we define the operator of $D_{\alpha}(A)$ as follows

$$
\begin{gathered}
D_{\alpha}(A)=\left\{\left\langle x, M_{D_{\alpha}}(A), N_{D_{\alpha}}(A)\right\rangle: x \in X\right\}, \\
M_{D_{\alpha}}(A)=\left[\left(M_{A L}(x)^{\delta}+\alpha \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right], \\
N_{D_{\alpha}}(A)=\left[\left(N_{A L}(x)^{\delta}+(1-\alpha) \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+(1-\alpha) \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right] .
\end{gathered}
$$

Clearly, $D_{\alpha}(A)$ is a GIVIFS S_{B}.
Theorem 3.2. For every GIVIFS S_{B} and A and $\alpha=\frac{1}{1+\lambda}$, it holds that
i. if $M_{A U}(x)=M_{A L}(x)$ then $\alpha=0$ and $D_{0}(A)=\square A$,
ii. if $N_{A U}(x)=N_{A L}(x)$ then $\alpha=1$ and $D_{1}(A)=\diamond A$.

Proof. (i) it is clear that, if $M_{A U}(x)=M_{A L}(x)$ then $\alpha=0$,

$$
\begin{aligned}
M_{D_{0}}(A) & =\left[\left(M_{A L}(x)^{\delta}+0 \times \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+0 \times \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right], \\
& =\left[M_{A L}(x), M_{A U}(x)\right], \\
N_{D_{0}}(A)= & {\left[\left(N_{A L}(x)^{\delta}+(1-0) \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+(1-0) \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right], }
\end{aligned}
$$

$$
=\left[\left(N_{A L}(x)^{\delta}+\pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+\pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right] .
$$

Since $\pi_{A U}(x)^{\delta}=1-M_{A L}(x)^{\delta}-N_{A L}(x)^{\delta}, \pi_{A L}(x)^{\delta}=1-M_{A U}(x)^{\delta}-N_{A U}(x)^{\delta}$, $N_{D_{0}}(A)=\left[\left(1-M_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(1-M_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]$,
therefore

$$
\begin{aligned}
& D_{0}(A)= \\
& \left\{\left\langle x,\left[M_{A L}(x), M_{A U}(x)\right],\left[\left(1-M_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(1-M_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]\right\rangle: x \in X\right\} \\
& =\square A .
\end{aligned}
$$

Proof is complete.
(ii) it is clear that, if $N_{A U}(x)=N_{A L}(x)$ then $\alpha=1$,

$$
\begin{gathered}
D_{1}(A)=\left\{\left\langle x, M_{D_{1}}(A), N_{D_{1}}(A)\right\rangle: x \in X\right\}, \\
N_{D_{1}}(A)=\left[\left(N_{A L}(x)^{\delta}+(1-1) \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+(1-1) \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right], \\
=\left[N_{A L}(x), N_{A U}(x)\right], \\
M_{D_{1}}(A)=\left[\left(M_{A L}(x)^{\delta}+\pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+\pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right], \\
=\left[\left(1-N_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(1-N_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}}\right], \\
D_{1}(A)=\left[\left[\left(1-N_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(1-N_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}}\right],\left[N_{A L}(x), N_{A U}(x)\right]\right]=\diamond A .
\end{gathered}
$$

Proof is complete.
Definition 3.3. Let $0 \leq \alpha \leq \frac{1}{1+\lambda}, 0 \leq \beta \leq \frac{\lambda}{1+\lambda}$, and $A \in G I V I F S_{B}$ we define the operator of $F_{\alpha, \beta}(A)$ as follows

$$
\begin{gathered}
F_{\alpha, \beta}(A)=\left\{\left\langle x, M_{F \alpha, \beta}(A), N_{F_{\alpha, \beta}}(A)\right\rangle: x \in X\right\}, \\
M_{F_{\alpha, \beta}}(A)=\left[\left(M_{A L}(x)^{\delta}+\alpha \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right], \\
N_{F_{\alpha, \beta}}(A)=\left[\left(N_{A L}(x)^{\delta}+\beta \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+\beta \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right] .
\end{gathered}
$$

Theorem 3.4. For every $\operatorname{GIVIFS}_{B} A$ and for some α, β, where $0 \leq \alpha \leq \frac{1}{1+\lambda}$, $0 \leq \beta \leq \frac{\lambda}{1+\lambda}$, it holds that
i. $F_{\alpha, \beta}(A) \in G I V I F S_{B}$,
ii. $0 \leq \gamma \leq \alpha \Rightarrow F_{\gamma, \beta}(A) \subset F_{\alpha, \beta}(A)$,
iii. $0 \leq \gamma \leq \beta \Rightarrow F_{\alpha, \beta}(A) \supset F_{\alpha, \gamma}(A)$,
iv. $D_{\alpha}(A)=F_{\alpha, 1-\alpha}(A), \alpha=\frac{1}{1+\lambda}$,
v. $\square A=F_{0,1}(A)$,
vi. $\triangle A=F_{1,0}(A)$,
vii. $\overline{F_{\alpha, \beta}(\bar{A})}=F_{\beta, \alpha}(A), 0 \leq \alpha, \beta \leq \min \left\{\frac{1}{1+\lambda}, \frac{\lambda}{1+\lambda}\right\}$.

Proof. (i)

$$
\begin{aligned}
M_{F_{\alpha, \beta}(A) U}(x)^{\delta}+N_{F_{\alpha, \beta}(A) U}(x)^{\delta} & =\left[\left(M_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]_{\delta}^{\delta} \\
& +\left[\left(N_{A U}(x)^{\delta}+\beta \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]^{\delta}, \\
& =M_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}+N_{A U}(x)^{\delta} \\
& +\beta \pi_{A L}(x)^{\delta} \\
& =M_{A U}(x)^{\delta}+N_{A U}(x)^{\delta}+(\alpha+\beta) \pi_{A L}(x)^{\delta}, \\
& \leq M_{A U}(x)^{\delta}+N_{A U}(x)^{\delta}+\pi_{A L}(x)^{\delta}=1 .
\end{aligned}
$$

Proof is complete for every α, β, where $0 \leq \alpha \leq \frac{1}{1+\lambda}, 0 \leq \beta \leq \frac{\lambda}{1+\lambda}$.
Proofs (ii) and (iii) are clearly.
(iv) It is clear that if $0 \leq \alpha \leq \frac{1}{1+\lambda}$ and $0 \leq 1-\alpha \leq \frac{\lambda}{1+\lambda}$ then $\alpha=\frac{1}{1+\lambda}$.

$$
\begin{gathered}
M_{F_{\alpha, 1-\alpha}}(A)=\left[\left(M_{A L}(x)^{\delta}+\alpha \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right], \\
N_{F_{\alpha, 1-\alpha}}(A)= \\
{\left[\left(N_{A L}(x)^{\delta}+(1-\alpha) \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+(1-\alpha) \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right],} \\
F_{\alpha, 1-\alpha}(A)=\left\{\left\langle x, M_{F_{\alpha, 1-\alpha}}(A), N_{F_{\alpha, 1-\alpha}}(A)\right\rangle: x \in X\right\}=D_{\alpha}(A)
\end{gathered}
$$

Remark 3.1. By using (iv) we have $D_{0}(A)=F_{0,1}(A)$ and $D_{1}(A)=F_{1,0}(A)$.
(v) By using Remark 3.1 and Theorem 3.2 it follows that $F_{0,1}(A)=\square A$.
(vi) By using Remark 3.1 and Theorem 3.2 it follows that $F_{1,0}(A)=\diamond A$.
(vii) Since

$$
\begin{gathered}
F_{\beta, \alpha}(A)=\left\{\left\langle x, M_{F_{\beta, \alpha}}(A), N_{F_{\beta, \alpha}}(A)\right\rangle: x \in X\right\}, \\
M_{F_{\beta, \alpha}}(A)=\left[\left(M_{A L}(x)^{\delta}+\beta \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+\beta \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right], \\
N_{F_{\beta, \alpha}}(A)=\left[\left(N_{A L}(x)^{\delta}+\alpha \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right] .
\end{gathered}
$$

And

$$
F_{\alpha, \beta}(\bar{A})=\left\{\left\langle x, M_{F_{\alpha}}(\bar{A}), N_{F_{\beta}}(\bar{A})\right\rangle: x \in X\right\},
$$

$$
M_{F_{\alpha, \beta}}(\bar{A})=\left[\left(N_{A L}(x)^{\delta}+\alpha \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]
$$

$$
N_{F_{\alpha, \beta}}(\bar{A})=\left[\left(M_{A L}(x)^{\delta}+\beta \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+\beta \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]
$$

hence

$$
\overline{F_{\alpha, \beta}(\bar{A})}=\left\{\left\langle x, N_{F_{\alpha, \beta}}(\bar{A}), M_{F_{\alpha, \beta}}(\bar{A})\right\rangle: x \in X\right\} .
$$

Finally, we have $\overline{F_{\alpha, \beta}(\bar{A})}=F_{\beta, \alpha}(A)$.

Definition 3.5. Let $\alpha, \beta \in[0,1]$ and $A \in G I V I F S_{B}$, we define the operator of $G_{\alpha, \beta}(A)$ as follows

$$
\begin{gathered}
G_{\alpha, \beta}(A)=\left\{\left\langle x, M_{G_{\alpha, \beta}}(A), N_{G_{\alpha, \beta}}(A)\right\rangle: x \in X\right\}, \\
M_{G_{\alpha, \beta}}(A)=\alpha^{\frac{1}{\delta}} M_{A}(x)=\left[\alpha^{\frac{1}{\delta}} M_{A L}(x), \alpha^{\frac{1}{\delta}} M_{A U}(x)\right], \\
N_{G_{\alpha, \beta}}(A)=\beta^{\frac{1}{\delta}} N_{A}(x)=\left[\beta^{\frac{1}{\delta}} N_{A L}(x), \beta^{\frac{1}{\delta}} N_{A U}(x)\right] .
\end{gathered}
$$

Theorem 3.6. For every $\operatorname{GIVIF} S_{B}$, and for every three real numbers $\alpha, \beta, \gamma \in$ [0, 1], it holds that
i. $G_{\alpha, \beta}(A) \in G I V I F S_{B}$,
ii. $\alpha \leq \gamma \Rightarrow G_{\alpha, \beta}(A) \subset G_{\gamma, \beta}(A)$,
iii. $\beta \leq \gamma \Rightarrow G_{\alpha, \beta}(A) \supset G_{\alpha, \gamma}(A)$,
iv. $\tau \in[0,1] \Rightarrow G_{\alpha, \beta}\left(G_{\gamma, \tau}(A)\right)=G_{\alpha \gamma, \beta \tau}(A)=G_{\gamma, \tau}\left(G_{\alpha, \beta}(A)\right)$,
v. $G_{\alpha, \beta}(C(A))=C\left(G_{\alpha, \beta}(A)\right)$,
vi. $G_{\alpha, \beta}(I(A))=I\left(G_{\alpha, \beta}(A)\right)$,
vii. $\overline{G_{\alpha, \beta}(\bar{A})}=G_{\beta, \alpha}(A)$.

Proof. (i)

$$
\begin{aligned}
M_{G_{\alpha, \beta} U}(A)(x)^{\delta}+N_{G_{\alpha, \beta} U}(A)(x)^{\delta} & =\left(\alpha^{\frac{1}{\delta}} M_{A U}(x)\right)^{\delta}+\left(\beta^{\frac{1}{\delta}} N_{A U}(x)\right)^{\delta} \\
& =\alpha M_{A U}(x)^{\delta}+\beta N_{A U}(x)^{\delta} \\
& \leq M_{A U}(x)^{\delta}+N_{A U}(x)^{\delta} \leq 1 .
\end{aligned}
$$

Finally, it can be concluded that $G_{\alpha, \beta}(A) \in G I V I F S_{B}$.
(ii) Since $\alpha \leq \gamma$ then it is clear that $\alpha^{\frac{1}{\delta}} \leq \gamma^{\frac{1}{\delta}}$ hence $\left[\alpha^{\frac{1}{\delta}} M_{A L}(x), \alpha^{\frac{1}{\delta}} M_{A U}(x)\right] \leq$ $\left[\gamma^{\frac{1}{\delta}} M_{A L}(x), \gamma^{\frac{1}{\delta}} M_{A U}(x)\right]$. Finally we have $G_{\alpha, \beta}(A) \subset G_{\gamma, \beta}(A)$.
The proof of (iii) is similar to (ii).
(iv) $A=\left\{\left\langle x, M_{A}(x), N_{A}(x)\right\rangle, x \in X\right\}$
$G_{\gamma, \tau}(A)=\left\{\left\langle x, M_{G_{\gamma, \tau}}(A), N_{G_{\gamma, \tau}}(A)\right\rangle: x \in X\right\}$,
$M_{G_{\gamma, \tau}}(A)=\left[\alpha^{\frac{1}{\delta}} M_{A L}(x), \alpha^{\frac{1}{\delta}} M_{A U}(x)\right]$,
$N_{G_{\gamma, \tau}}(A)=\left[\beta^{\frac{1}{\delta}} N_{A L}(x), \beta^{\frac{1}{\delta}} N_{A U}(x)\right]$,

$$
\begin{aligned}
G_{\alpha, \beta}\left(G_{\gamma, \tau}(A)\right) & =\left\{\left\langle x, \alpha^{\frac{1}{\delta}} \gamma^{\frac{1}{\delta}} M_{A}(x), \beta^{\frac{1}{\delta}} \tau^{\frac{1}{\delta}} N_{A}(x)\right\rangle: x \in X\right\} \\
& =\left\{\left\langle x,(\alpha \gamma)^{\frac{1}{\delta}} M_{A}(x),(\beta \tau)^{\frac{1}{\delta}} N_{A}(x)\right\rangle: x \in X\right\} \\
& =G_{\alpha \gamma, \beta \tau}(A)
\end{aligned}
$$

and

$$
\begin{aligned}
G_{\gamma, \tau}\left(G_{\alpha, \beta}(A)\right) & =\left\{\left\langle x, \gamma^{\frac{1}{\delta}} \alpha^{\frac{1}{\delta}} M_{A}(x), \tau^{\frac{1}{\delta}} \beta^{\frac{1}{\delta}} N_{A}(x)\right\rangle: x \in X\right\} \\
& =\left\{\left\langle x,(\gamma \alpha)^{\frac{1}{\delta}} M_{A}(x),(\tau \beta)^{\frac{1}{\delta}} N_{A}(x)\right\rangle: x \in X\right\} \\
& =\left\{\left\langle x,(\alpha \gamma)^{\frac{1}{\delta}} M_{A}(x),(\beta \tau)^{\frac{1}{\delta}} N_{A}(x)\right\rangle: x \in X\right\} \\
& =G_{\alpha \gamma, \beta \tau}(A),
\end{aligned}
$$

hence

$$
G_{\alpha, \beta}\left(G_{\gamma, \tau}(A)\right)=G_{\alpha \gamma, \beta \tau}(A)=G_{\gamma, \tau}\left(G_{\alpha, \beta}(A)\right)
$$

(v)

$$
\begin{aligned}
G_{\alpha, \beta}(C(A)) & =\left\{\left\langle x, \alpha^{\frac{1}{\delta}} \max _{y \in X} M_{A}(y), \beta^{\frac{1}{\delta}} \min _{y \in X} N_{A}(y)\right\rangle: x \in X\right\} \\
& =\left\{\left\langle x, \max _{y \in X} \alpha^{\frac{1}{\delta}} M_{A}(y), \min _{y \in X} \beta^{\frac{1}{\delta}} N_{A}(y)\right\rangle: x \in X\right\} \\
& =C\left(G_{\alpha, \beta}(A)\right) .
\end{aligned}
$$

(vi)

$$
\begin{aligned}
G_{\alpha, \beta}(I(A)) & =\left\{\left\langle x, \alpha^{\frac{1}{\delta}} \min _{y \in X} M_{A}(y), \beta^{\frac{1}{\delta}} \max _{y \in X} N_{A}(y)\right\rangle: x \in X\right\} \\
& =\left\{\left\langle x, \min _{y \in X} \alpha^{\frac{1}{\delta}} M_{A}(y), \max _{y \in X} \beta^{\frac{1}{\delta}} N_{A}(y)\right\rangle: x \in X\right\} \\
& =I\left(G_{\alpha, \beta}(A)\right) .
\end{aligned}
$$

(vii) Let $A=\left\{\left\langle x, M_{A}(x), N_{A}(x)\right\rangle: x \in X\right\}$ is a GIVIFS S_{B} then
$\bar{A}=\left\{\left\langle x, N_{A}(x), M_{A}(y)\right\rangle: x \in X\right\}$,
$G_{\beta, \alpha}(A)=\left\{\left\langle x, \beta^{\frac{1}{\delta}} M_{A}(x), \alpha^{\frac{1}{\delta}} N_{A}(x)\right\rangle: x \in X\right\}$,
$G_{\alpha, \beta}(\bar{A})=\left\{\left\langle x, \alpha^{\frac{1}{\delta}} N_{A}(x), \beta^{\frac{1}{\delta}} M_{A}(x)\right\rangle: x \in X\right\}$,
$\overline{G_{\alpha, \beta}(\bar{A})}=\left\{\left\langle x, \beta^{\frac{1}{\delta}} M_{A}(x), \alpha^{\frac{1}{\delta}} N_{A}(x)\right\rangle: x \in X\right\}$,
hence $\overline{G_{\alpha, \beta}(\bar{A})}=G_{\beta, \alpha}(A)$.
Definition 3.7. Let $0 \leq \alpha \leq \frac{1}{1+\lambda}, \beta \in[0,1]$ and $A \in G I V I F S_{B}$, we define the operator of $J_{\alpha, \beta}(A)$ as follows

$$
\begin{aligned}
& J_{\alpha, \beta}(A)=\left\{\left\langle x, M_{J_{\alpha, \beta}}(A), N_{J_{\alpha, \beta}}(A)\right\rangle: x \in X\right\} \\
& M_{J_{\alpha, \beta}}(A)=\left[\left(M_{A L}(x)^{\delta}+\alpha \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right], \\
& N_{J_{\alpha, \beta}}(A)=\left[\beta^{\frac{1}{\delta}} N_{A L}(x), \beta^{\frac{1}{\delta}} N_{A U}(x)\right] .
\end{aligned}
$$

Theorem 3.8. For every GIVIFS $S_{B} A$, and for some real numbers $0 \leq \alpha \leq \frac{1}{1+\lambda}$, $\beta \in[0,1]$, it holds that
i. $J_{\alpha, \beta}(A) \in G I V I F S_{B}$,
ii. $\alpha \leq \gamma \Rightarrow J_{\alpha, \beta}(A) \subset J_{\gamma, \beta}(A), 0 \leq \gamma \leq \frac{1}{1+\lambda}$,
iii. $\beta \leq \gamma \Rightarrow J_{\alpha, \beta}(A) \supset J_{\alpha, \gamma}(A), \gamma \in[0,1]$,
iv. if $N_{A U}(x)=N_{A L}(x)$ then $0 \leq \alpha \leq 1$ and $\diamond A=J_{1,1}(A)$,
v. $A=J_{0,1}(A)$.

Proof. (i)

$$
M_{J_{\alpha, \beta}(A) U}(x)^{\delta}+N_{J_{\alpha, \beta}(A) U}(x)^{\delta}=\left(\left(M_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right)^{\delta}
$$

$$
\begin{aligned}
& +\left(\beta^{\frac{1}{\delta}} N_{A U}(x)\right)^{\delta} \\
& =\left(M_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)+\beta N_{A U}(x)^{\delta} \\
& \leq M_{A U}(x)^{\delta}+\pi_{A L}(x)^{\delta}+N_{A U}(x)^{\delta}=1
\end{aligned}
$$

Finally, it can be concluded that $J_{\alpha, \beta}(A) \in I V G I F S_{B}$.
(ii) Since $\alpha \leq \gamma$ then it is clear that

$$
\begin{aligned}
& {\left[\left(M_{A L}(x)^{\delta}+\alpha \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]} \\
& \quad \leq\left(M_{A L}(x)^{\delta}+\gamma \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+\gamma \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}
\end{aligned}
$$

Finally we have $J_{\alpha, \beta}(A) \subset J_{\gamma, \beta}(A)$. This completes the proof. The proof of (iii) is similar (ii). Proofs (iv) and (v) are clearly.

3.2. The second group operators.

Definition 3.9. Let $\alpha=\frac{\lambda}{1+\lambda}$ and $A \in \operatorname{GIVIFS}_{B}$, we define the operator of $d_{\alpha}(A)$ as follows

$$
\begin{gathered}
d_{\alpha}(A)=\left\{\left\langle x, M_{d \alpha}(A), N_{d_{\alpha}}(A)\right\rangle: x \in X\right\}, \\
M_{d \alpha}(A)=\left[\left(N_{A L}(x)^{\delta}+\alpha \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right], \\
N_{d_{\alpha}}(A)=\left[\left(M_{A L}(x)^{\delta}+(1-\alpha) \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+(1-\alpha) \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right] .
\end{gathered}
$$

Theorem 3.10. For every GIVIFS $S_{B} A$ and $\alpha=\frac{\lambda}{1+\lambda}$, it holds that
i. $d_{\alpha}(A) \in G I V I F S_{B}$,
ii. $d_{0}(A)=\overline{\diamond A}$, (it is clear that, if $N_{A U}(x)=N_{A L}(x)$ then $\alpha=0$),
iii. $d_{1}(A)=\overline{\square A}$, (it is clear that, if $M_{A U}(x)=M_{A L}(x)$ then $\alpha=1$).

Proof. Proof (i) is clearly.
(ii)

$$
\begin{gathered}
d_{\alpha}(A)=\left\{\left\langle x, M_{d_{\alpha}}(A), N_{d_{\alpha}}(A)\right\rangle: x \in X\right\} \\
M_{d_{\alpha}}(A)=\left[\left(N_{A L}(x)^{\delta}+\alpha \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right], \\
N_{d_{\alpha}}(A)=\left[\left(M_{A L}(x)^{\delta}+(1-\alpha) \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+(1-\alpha) \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right], \\
M_{d_{0}}(A)=\left[\left(N_{A L}(x)^{\delta}+0 \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+0 \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right] \\
=\left[N_{A L}(x), N_{A U}(x)\right] \\
N_{d_{0}}(A)=
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\left(M_{A L}(x)^{\delta}+(1-0) \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+(1-0) \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right] } \\
&= {\left[\left(M_{A L}(x)^{\delta}+\pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+\pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right], } \\
&= {\left[\left(1-N_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(1-N_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}}\right] } \\
& d_{0}(A)= \\
&\left\{\left\langle x,\left[N_{A L}(x), N_{A U}(x)\right],\left[\left(1-N_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(1-N_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]\right\rangle: x \in X\right\} \\
&= \overline{\diamond A} .
\end{aligned}
$$

This completes the proof.
(iii) $d_{1}(A)=\left\{\left\langle x, M_{d_{1}}(A), N_{d_{1}}(A)\right\rangle: x \in X\right\}$,

$$
\begin{aligned}
& N_{d_{1}}(A)=\left[\left(M_{A L}(x)^{\delta}+(1-1) \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+(1-1) \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right] \\
&=\left[M_{A L}(x), M_{A U}(x)\right] \\
& M_{d_{1}}(A)=\left[\left(N_{A L}(x)^{\delta}+\pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+\pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right] \\
&=\left[\left(1-M_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(1-M_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}}\right] \\
& d_{1}(A)=\left[\left[\left(1-M_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(1-M_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}}\right],\left[M_{A L}(x), M_{A U}(x)\right]\right]=\overline{\square A}
\end{aligned}
$$

This completes the proof.
Definition 3.11. Let $0 \leq \alpha \leq \frac{\lambda}{1+\lambda}, 0 \leq \beta \leq \frac{1}{1+\lambda}$ and $A \in G I V I F S_{B}$, we define the operator of $f_{\alpha, \beta}(A)$ as follows
$f_{\alpha, \beta}(A)=\left\{\left\langle x, M_{f_{\alpha, \beta}}(A), N_{f_{\alpha, \beta}}(A)\right\rangle: x \in X\right\}$,
$M_{f_{\alpha, \beta}}(A)=\left[\left(N_{A L}(x)^{\delta}+\alpha \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]$,
$N_{f_{\alpha, \beta}}(A)=\left[\left(M_{A L}(x)^{\delta}+\beta \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+\beta \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]$.
Theorem 3.12. For every GIVIFS $S_{B} A$ and for some α, β where $0 \leq \alpha \leq \frac{\lambda}{1+\lambda}$, $0 \leq \beta \leq \frac{1}{1+\lambda}$, it holds that
i. $f_{\alpha, \beta}(A) \in G I V I F S_{B}$,
ii. $0 \leq \gamma \leq \alpha \Rightarrow f_{\gamma, \beta}(A) \subset f_{\alpha, \beta}(A)$,
iii. $0 \leq \gamma \leq \beta \Rightarrow f_{\alpha, \beta}(A) \subset f_{\alpha, \gamma}(A)$,
iv. $D_{\alpha}(A)=f_{\alpha, 1-\alpha}(A), \alpha=\frac{\lambda}{1+\lambda}$,
v. $f_{0,1}(A)=\overline{\diamond A}$, (it is clear that, if $N_{A U}(x)=N_{A L}(x)$ then $0 \leq \beta \leq 1$, $\alpha=0)$,
vi. $f_{1,0}(A)=\overline{\square A}$, (it is clear that, if $M_{A U}(x)=M_{A L}(x)$ then $0 \leq \alpha \leq 1$, $\beta=0)$,
vii. $\overline{f_{\alpha, \beta}(\bar{A})}=f_{\beta, \alpha}(A), 0 \leq \alpha, \beta \leq \min \left\{\frac{\lambda}{1+\lambda}, \frac{1}{1+\lambda}\right\}$.

Proof. (i)

$$
\begin{aligned}
M_{f_{\alpha, \beta}(A) U}(x)^{\delta}+N_{f_{\alpha, \beta}(A) U}(x)^{\delta} & =\left[\left(N_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]^{\delta} \\
& +\left[\left(M_{A U}(x)^{\delta}+\beta \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]^{\delta}, \\
& =N_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}+M_{A U}(x)^{\delta} \\
& +\beta \pi_{A L}(x)^{\delta} \\
& =M_{A U}(x)^{\delta}+N_{A U}(x)^{\delta} \\
& +(\alpha+\beta) \pi_{A L}(x)^{\delta} \\
& \leq M_{A U}(x)^{\delta}+N_{A U}(x)^{\delta}+\pi_{A L}(x)^{\delta} \\
& =1 .
\end{aligned}
$$

Proof (ii) and (iii) are clearly.
(iv.) It is clear, $0 \leq \alpha \leq \frac{\lambda}{1+\lambda}$ and $0 \leq 1-\alpha \leq \frac{1}{1+\lambda}$ then $\alpha=\frac{\lambda}{1+\lambda}$

$$
\begin{gathered}
M_{f_{\alpha, 1-\alpha}}(A)=\left[\left(N_{A L}(x)^{\delta}+\alpha \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right] \\
N_{f_{\alpha, 1-\alpha}}(A)= \\
{\left[\left(M_{A L}(x)^{\delta}+(1-\alpha) \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+(1-\alpha) \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]} \\
f_{\alpha, 1-\alpha}(A)=\left\{\left\langle x, M_{f_{\alpha}}(A), N_{f_{1-\alpha}}(A)\right\rangle: x \in X\right\}=d_{\alpha}(A)
\end{gathered}
$$

Remark 3.2. By using (iv) we have $d_{0}(A)=f_{0,1}(A)$ and $d_{1}(A)=f_{1,0}(A)$.
(v) By using Remark 3.2 and Theorem 3.10 it follows that $f_{0,1}(A)=\overline{\diamond A}$.
(vi) By using Remark 3.2 and Theorem 3.10 it follows that $f_{1,0}(A)=\bar{\square} A$.
(vii) Since

$$
\begin{gathered}
f_{\beta, \alpha}(A)=\left\{\left\langle x, M_{f_{\beta, \alpha}}(A), N_{f_{\beta, \alpha}}(A)\right\rangle: x \in X\right\}, \\
M_{f_{\beta, \alpha}}(A)=\left[\left(N_{A L}(x)^{\delta}+\beta \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+\beta \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right] \\
N_{f_{\beta, \alpha}}(A)=\left[\left(M_{A L}(x)^{\delta}+\alpha \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right] .
\end{gathered}
$$

And

$$
\begin{gathered}
f_{\alpha, \beta}(\bar{A})=\left\{\left\langle x, M_{f_{\alpha, \beta}}(\bar{A}), N_{f_{\alpha, \beta}}(\bar{A})\right\rangle: x \in X\right\} \\
M_{f_{\alpha, \beta}}(\bar{A})=\left[\left(M_{A L}(x)^{\delta}+\alpha \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right], \\
N_{f_{\alpha, \beta}}(\bar{A})=\left[\left(N_{A L}(x)^{\delta}+\beta \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+\beta \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right],
\end{gathered}
$$

hence

$$
\overline{f_{\alpha, \beta}(\bar{A})}=\left\{\left\langle x, N_{f_{\beta}}(\bar{A}), M_{f_{\alpha}}(\bar{A})\right\rangle: x \in X\right\}
$$

Finally, we have $\overline{f_{\alpha, \beta}(\bar{A})}=f_{\beta, \alpha}(A)$.
Definition 3.13. Let $\alpha, \beta \in[0,1]$ and $A \in G I V I F S_{B}$, we define the operator of $g_{\alpha, \beta}(A)$ as follows

$$
\begin{gathered}
g_{\alpha, \beta}(A)=\left\{\left\langle x, M_{g_{\alpha, \beta}}(A), N_{g_{\alpha, \beta}}(A)\right\rangle: x \in X\right\}, \\
M_{g_{\alpha, \beta}}(A)=\alpha^{\frac{1}{\delta}} N_{A}(x)=\left[\alpha^{\frac{1}{\delta}} N_{A L}(x), \alpha^{\frac{1}{\delta}} N_{A U}(x)\right], \\
N_{g_{\alpha, \beta}}(A)=\beta^{\frac{1}{\delta}} M_{A}(x)=\left[\beta^{\frac{1}{\delta}} M_{A L}(x), \beta^{\frac{1}{\delta}} M_{A U}(x)\right] .
\end{gathered}
$$

Theorem 3.14. For every GIVIFS S_{B} A, and for every three real numbers α, $\beta, \gamma \in[0,1]$, it holds that
i. $g_{\alpha, \beta}(A) \in G I V I F S_{B}$,
ii. $\alpha \leq \gamma \Rightarrow g_{\alpha, \beta}(A) \subset g_{\gamma, \beta}(A)$,
iii. $\beta \leq \gamma \Rightarrow g_{\alpha, \beta}(A) \supset g_{\alpha, \gamma}(A)$,
iv. $g_{\alpha, \beta}\left(g_{\gamma, \tau}(A)\right)=g_{\alpha \gamma, \beta \tau}(A)=g_{\gamma, \tau\left(g_{\alpha, \beta}(A)\right)}, \tau \in[0,1]$,
v. $g_{\alpha, \beta}(C(A))=I\left(g_{\alpha, \beta}(A)\right)$,
vi. $\underline{g_{\alpha, \beta}(I(A))}=C\left(g_{\alpha, \beta}(A)\right)$,
vii. $\overline{g_{\alpha, \beta}(\bar{A})}=g_{\beta, \alpha}(A)$.

Proof. (i)

$$
\begin{aligned}
M_{g_{\alpha, \beta} U}(A)(x)^{\delta}+N_{g_{\alpha, \beta} U}(A)(x)^{\delta} & =\left(\alpha^{\frac{1}{\delta}} N_{A U}(x)\right)^{\delta}+\left(\beta^{\frac{1}{\delta}} M_{A U}(x)\right)^{\delta} \\
& =\alpha N_{A U}(x)^{\delta}+\beta M_{A U}(x)^{\delta} \\
& \leq N_{A U}(x)^{\delta}+M_{A U}(x)^{\delta} \leq 1
\end{aligned}
$$

Finally, it can be concluded that $g_{\alpha, \beta}(A) \in G I V I F S_{B}$.
(ii) Since $\alpha \leq \gamma$ then it is clear that $\alpha^{\frac{1}{\delta}} \leq \gamma^{\frac{1}{\delta}}$
hence $\left[\alpha^{\frac{1}{\delta}} N_{A L}(x), \alpha^{\frac{1}{\delta}} N_{A U}(x)\right] \leq\left[\gamma^{\frac{1}{\delta}} N_{A L}(x), \gamma^{\frac{1}{\delta}} N_{A U}(x)\right]$.
Finally we have $g_{\alpha, \beta}(A) \subset g_{\gamma, \beta}(A)$. The proof of (iii) is similar (ii).
(iv) $A=\left\{\left\langle x, M_{A}(x), N_{A}(x)\right\rangle: x \in X\right\}$,
$g_{\gamma, \tau}(A)=\left\{\left\langle x, M_{g_{\gamma, \tau}}(A), N_{g_{\gamma, \tau}}(A)\right\rangle: x \in X\right\}$.
$M_{g_{\gamma, \tau}}(A)=\left[\gamma^{\frac{1}{\delta}} N_{A L}(x), \gamma^{\frac{1}{\delta}} N_{A U}(x)\right]$,
$N_{g_{\gamma, \tau}}(A)=\left[\tau^{\frac{1}{\delta}} M_{A L}(x), \tau^{\frac{1}{\delta}} M_{A U}(x)\right]$,

$$
\begin{aligned}
g_{\alpha, \beta}\left(g_{\gamma, \tau}(A)\right) & =\left\{\left\langle x, \alpha^{\frac{1}{\delta}} \gamma^{\frac{1}{\delta}} N_{A}(x), \beta^{\frac{1}{\delta}} \tau^{\frac{1}{\delta}} M_{A}(x)\right\rangle: x \in X\right\} \\
& =\left\{\left\langle x,(\alpha \gamma)^{\frac{1}{\delta}} N_{A}(x),(\beta \tau)^{\frac{1}{\delta}} M_{A}(x)\right\rangle: x \in X\right\} \\
& =g_{\alpha \gamma, \beta, \tau}(A)
\end{aligned}
$$

and

$$
\begin{aligned}
g_{\gamma, \tau}\left(g_{\alpha, \beta}(A)\right) & =\left\{\left\langle x, \gamma^{\frac{1}{\delta}} \alpha^{\frac{1}{\delta}} N_{A}(x), \tau^{\frac{1}{\delta}} \beta^{\frac{1}{\delta}} M_{A}(x)\right\rangle: x \in X\right\} \\
& =\left\{\left\langle x,(\gamma \alpha)^{\frac{1}{\delta}} N_{A}(x),(\tau \beta)^{\frac{1}{\delta}} M_{A}(x)\right\rangle: x \in X\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\left\langle x,(\alpha \gamma)^{\frac{1}{\delta}} N_{A}(x),(\beta \tau)^{\frac{1}{\delta}} M_{A}(x)\right\rangle: x \in X\right\}, \\
& =g_{\alpha \gamma, \beta \tau}(A)
\end{aligned}
$$

hence

$$
g_{\alpha, \beta}\left(g_{\gamma, \tau}(A)\right)=g_{\alpha \gamma, \beta \tau}(A)=g_{\gamma, \tau}\left(g_{\alpha, \beta}(A)\right)
$$

(v)

$$
\begin{aligned}
C(A) & =\left\{\left\langle x, \max _{y \in X} M_{A}(y), \min _{y \in X} N_{A}(y)\right\rangle: x \in X\right\}, \\
g_{\alpha, \beta}(C(A)) & =\left\{\left\langle x, \alpha^{\frac{1}{\delta}} \min _{y \in X} N_{A}(y), \beta^{\frac{1}{\delta}} \max _{y \in X} M_{A}(y)\right\rangle: x \in X\right\}, \\
& =\left\{\left\langle x, \min _{y \in X} \alpha^{\frac{1}{\delta}} N_{A}(y), \max _{y \in X} \beta^{\frac{1}{\delta}} M_{A}(y)\right\rangle: x \in X\right\}, \\
& =I\left(g_{\alpha, \beta}(A)\right) .
\end{aligned}
$$

(vi)

$$
\begin{aligned}
I(A) & =\left\{\left\langle x, \min _{y \in X} M_{A}(y), \max _{y \in X} N_{A}(y)\right\rangle: x \in X\right\}, \\
g_{\alpha, \beta}(I(A)) & =\left\{\left\langle x, \alpha^{\frac{1}{\delta}} \max _{y \in X} N_{A}(y), \beta^{\frac{1}{\delta}} \min _{y \in X} M_{A}(y)\right\rangle: x \in X\right\}, \\
& =\left\{\left\langle x, \max _{y \in X} \alpha^{\frac{1}{\delta}} N_{A}(y), \min _{y \in X} \beta^{\frac{1}{\delta}} M_{A}(y)\right\rangle: x \in X\right\}, \\
& =C\left(g_{\alpha, \beta}(A)\right), \quad \alpha, \beta \in[0,1] .
\end{aligned}
$$

(vii) Let $A=\left\{\left\langle x, M_{A}(x), N_{A}(x)\right\rangle: x \in X\right\}$ is a $G I V I F S_{B}$ then $\bar{A}=\left\{\left\langle x, N_{A}(x), M_{A}(y)\right\rangle: x \in X\right\}$,
$g_{\beta, \alpha}(A)=\left\{\left\langle x, \beta^{\frac{1}{\delta}} N_{A}(x), \alpha^{\frac{1}{\delta}} M_{A}(x)\right\rangle: x \in X\right\}$,
$g_{\alpha, \beta}(\bar{A})=\left\{\left\langle x, \alpha^{\frac{1}{\delta}} M_{A}(x), \beta^{\frac{1}{\delta}} N_{A}(x)\right\rangle: x \in X\right\}$,
$\overline{g_{\alpha, \beta}(\bar{A})}=\left\{\left\langle x, \beta^{\frac{1}{\delta}} N_{A}(x), \alpha^{\frac{1}{\delta}} M_{A}(x)\right\rangle: x \in X\right\}$,
hence $g_{\alpha, \beta}(\bar{A})=g_{\beta, \alpha}(A)$.
Definition 3.15. Let $0 \leq \alpha \leq \frac{\lambda}{1+\lambda}, \beta \in[0,1]$ and $A \in G I V I F S_{B}$, we define the operator of $j_{\alpha, \beta}(A)$ as follows
$j_{\alpha, \beta}(A)=\left\{\left\langle x, M_{j_{\alpha, \beta}}(A), N_{j_{\alpha, \beta}}(A)\right\rangle: x \in X\right\}$,
$M_{j_{\alpha, \beta}}(A)=\left[\left(N_{A L}(x)^{\delta}+\alpha \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]$,
$N_{j_{\alpha, \beta}}(A)=\left[\beta^{\frac{1}{\delta}} M_{A L}(x), \beta^{\frac{1}{\delta}} M_{A U}(x)\right]$.
Theorem 3.16. For every GIVIFS $S_{B} A$, and for some real numbers $0 \leq \alpha \leq$ $\frac{\lambda}{1+\lambda}, \beta \in[0,1]$, it holds that
i. $j_{\alpha, \beta}(A) \in G I V I F S_{B}$,
ii. $\alpha \leq \gamma \Rightarrow j_{\alpha, \beta}(A) \subset j_{\gamma, \beta}(A), 0 \leq \gamma \leq \frac{\lambda}{1+\lambda}$,
iii. $\beta \leq \gamma \Rightarrow j_{\alpha, \beta}(A) \supset j_{\alpha, \gamma}(A), 0 \leq \gamma \leq 1$,
iv. $j_{1,1}(A)=\overline{\square A}$, (it is clear that, if $M_{A U}(x)=M_{A L}(x)$ then, $0 \leq \alpha \leq 1$),
v. $j_{0,1}(A)=\bar{A}$, (it is clear that, if $N_{A U}(x)=N_{A L}(x)$ then, $\alpha=0$).

Proof. (i)

$$
\begin{aligned}
M_{j_{\alpha, \beta}(A) U}(x)^{\delta}+N_{j_{\alpha, \beta}(A) U}(x)^{\delta} & =\left(\left(N_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right)^{\delta} \\
& +\left(\beta^{\frac{1}{\delta}} M_{A U}(x)\right)^{\delta} \\
& =\left(N_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)+\beta M_{A U}(x)^{\delta} \\
& \leq N_{A U}(x)^{\delta}+\pi_{A L}(x)^{\delta}+M_{A U}(x)^{\delta}=1
\end{aligned}
$$

Finally, it can be concluded that $j_{\alpha, \beta}(A) \in G I V I F S_{B}$.
(ii) Since $\alpha \leq \gamma$ then it is clear that

$$
\begin{aligned}
& {\left[\left(N_{A L}(x)^{\delta}+\alpha \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]} \\
& \quad \leq\left[\left(N_{A L}(x)^{\delta}+\gamma \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+\gamma \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right] .
\end{aligned}
$$

Finally we have $j_{\alpha, \beta}(A) \subset j_{\gamma, \beta}(A)$.
The proof of (iii) is similar (ii). Proofs (iv) and (v) are clearly.
Definition 3.17. Let $\alpha \in[0,1], 0 \leq \beta \leq \frac{\lambda}{1+\lambda}$ and $A \in G I V I F S_{B}$, we define the operator of $H_{\alpha, \beta}(A)$ as follows
$H_{\alpha, \beta}(A)=\left\{\left\langle x, M_{H_{\alpha, \beta}}(A), N_{H_{\alpha, \beta}}(A)\right\rangle: x \in X\right\}$,
$M_{H_{\alpha, \beta}}(A)=\left[\left(\alpha M_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(\alpha M_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]$,
$N_{H_{\alpha, \beta}}(A)=\left[\left(N_{A L}(x)^{\delta}+\beta \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(N_{A U}(x)^{\delta}+\beta \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]$.
Theorem 3.18. For every GIVIF S_{B} A, and for every real numbers $\alpha \in[0,1]$, $0 \leq \beta \leq \frac{\lambda}{1+\lambda}$, it holds that
i. $H_{\alpha, \beta}(A) \in G I V I F S_{B}$,
ii. $\alpha \leq \gamma \Rightarrow H_{\alpha, \beta}(A) \subset H_{\gamma, \beta}(A), \quad \gamma \in[0,1]$,
iii. $\beta \leq \gamma \Rightarrow H_{\alpha, \beta}(A) \supset H_{\alpha, \gamma}(A), \quad 0 \leq \gamma \leq \frac{\lambda}{1+\lambda}$,
iv. $H_{1,0}(A)=A$,
v. $H_{1,1}(A)=\square A$, (it is clear that, if $M_{A U}(x)=M_{A L}(x)$ then $0 \leq \beta \leq 1$).

Proof.

$$
\begin{aligned}
M_{H_{\alpha, \beta}(A) U}(x)^{\delta}+N_{H_{\alpha, \beta}(A) U}(x)^{\delta} & =\left(\alpha^{\frac{1}{\delta}} M_{A U}(x)\right)^{\delta} \\
& +\left(\left(N_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right)^{\delta}, \\
& =\beta M_{A U}(x)^{\delta}+\left(N_{A U}(x)^{\delta}+\alpha \pi_{A L}(x)^{\delta}\right), \\
& \leq M_{A U}(x)^{\delta}+\pi_{A L}(x)^{\delta}+N_{A U}(x)^{\delta}=1 .
\end{aligned}
$$

Proofs (ii), (iii), (iv) and (v) are clearly.

Definition 3.19. Let $\alpha \in[0,1], 0 \leq \beta \leq \frac{1}{1+\lambda}$ and $A \in G I V I F S_{B}$, we define the operator of $h_{\alpha, \beta}(A)$ as follows
$h_{\alpha, \beta}(A)=\left\{\left\langle x, M_{h_{\alpha, \beta}}(A), N_{h_{\alpha, \beta}}(A)\right\rangle: x \in X\right\}$,
$M_{h_{\alpha, \beta}}(A)=\left[\left(\alpha N_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(\alpha N_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]$,
$N_{h_{\alpha, \beta}}(A)=\left[\left(M_{A L}(x)^{\delta}+\beta \pi_{A U}(x)^{\delta}\right)^{\frac{1}{\delta}},\left(M_{A U}(x)^{\delta}+\beta \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right]$.
Theorem 3.20. For every GIVIFS S_{B}, and for every real numbers $\alpha \in[0,1]$, $0 \leq \beta \leq \frac{1}{1+\lambda}$, it holds that
i. $h_{\alpha, \beta}(A) \in G I V I F S_{B}$,
ii. $\alpha \leq \gamma \Rightarrow h_{\alpha, \beta}(A) \subset h_{\gamma, \beta}(A), \quad \gamma \in[0,1]$,
iii. $\beta \leq \gamma \Rightarrow h_{\alpha, \beta}(A) \supset h_{\alpha, \gamma}(A), \quad 0 \leq \gamma \leq \frac{1}{1+\lambda}$,
iv. $h_{\alpha, \beta}(\bar{A})=H_{\alpha, \beta}(A), \quad 0 \leq \beta \leq \min \left\{\frac{\lambda}{1+\lambda}, \frac{1}{1+\lambda}\right\}$,
v. $h_{1,0}(A)=\bar{A}$,
vi. $h_{1,1}(A)=\overline{\diamond A}$. (it is clear that, if $N_{A U}(x)=N_{A L}(x)$ then $0 \leq \beta \leq 1$).

Proof. (i)

$$
\begin{aligned}
M_{h_{\alpha, \beta}(A) U}(x)^{\delta}+N_{h_{\alpha, \beta}(A) U}(x)^{\delta} & =\left(\alpha^{\frac{1}{\delta}} N_{A U}(x)\right)^{\delta} \\
& +\left(\left(M_{A U}(x)^{\delta}+\beta \pi_{A L}(x)^{\delta}\right)^{\frac{1}{\delta}}\right)^{\delta} \\
& =\alpha N_{A U}(x)^{\delta}+\left(M_{A U}(x)^{\delta}+\beta \pi_{A L}(x)^{\delta}\right) \\
& \leq N_{A U}(x)^{\delta}+\pi_{A L}(x)^{\delta}+M_{A U}(x)^{\delta}=1
\end{aligned}
$$

The proofs (iii), (ii), (iv), (v) and (vi) are clearly.
Remark 3.3. According to definition, the operators of $D_{\alpha}(A)$ and $F_{\alpha, \beta}(A)$ increases the membership and non-membership degree A, the operators of $d_{\alpha}(A)$ and $f_{\alpha, \beta}(A)$ increases the membership and non-membership degree \bar{A}, the operator of $G_{\alpha, \beta}(A)$ reduces the membership and non-membership degree A, the operator of $g_{\alpha, \beta}(A)$ reduces the membership and non-membership degree \bar{A}, the operator of $h_{\alpha, \underline{\beta}}(A)$ reduces the membership degree \bar{A} and increases non-membership degree \bar{A}, the operator of $H_{\alpha, \beta}(A)$ reduces the membership degree A and increases non-membership degree A, the operator of $j_{\alpha, \beta}(A)$ increases the membership degree \bar{A} and reduces non-membership degree \bar{A}, the operator of $J_{\alpha, \beta}(A)$ increases the membership degree A and reduces non-membership degree A.
Example 3.21. Let $A=\left\{\left\langle x_{1},[0.5,0.6],[0.2,0.3]\right\rangle\right\}, \delta=2$, then
$\pi_{A}\left(x_{1}\right)=[0.7416,0.8426], \lambda_{A}=0.4545$ and
$F_{\alpha, \beta}(A)=\left\{\left\langle x_{1},\left[(0.25+0.71 \alpha)^{\frac{1}{2}},(0.36+0.55 \alpha)^{\frac{1}{2}}\right],\left[(0.04+0.71 \beta)^{\frac{1}{2}},(0.09+0.55 \beta)^{\frac{1}{2}}\right]\right\rangle\right\}$
, $0 \leq \alpha \leq 0.6875,0 \leq \beta \leq 0.3125$.
$G_{\alpha, \beta}(A)=\left\{\left\langle x_{1},[0.5 \sqrt{\alpha}, 0.6 \sqrt{\alpha}],[0.2 \sqrt{\beta}, 0.3 \sqrt{\beta}]\right\rangle\right\}, 0 \leq \alpha \leq 1,0 \leq \beta \leq 1$.
$J_{\alpha, \beta}(A)=\left\{\left\langle x_{1},\left[(0.25+0.71 \alpha)^{\frac{1}{2}},(0.36+0.55 \alpha)^{\frac{1}{2}}\right],[0.2 \sqrt{\beta}, 0.3 \sqrt{\beta}]\right\rangle\right\}$,
$0 \leq \alpha \leq 0.6875,0 \leq \beta \leq 1$.
$f_{\alpha, \beta}(A)=\left\{\left\langle x_{1},\left[(0.04+0.71 \alpha)^{\frac{1}{2}},(0.09+0.55 \alpha)^{\frac{1}{2}}\right],\left[(0.25+0.71 \beta)^{\frac{1}{2}},(0.36+0.55 \beta)^{\frac{1}{2}}\right]\right\rangle\right\}$,
$0 \leq \alpha \leq 0.3125,0 \leq \beta \leq 0.6875$.
$g_{\alpha, \beta}(A)=\left\{\left\langle x_{1},[0.2 \sqrt{\alpha}, 0.3 \sqrt{\alpha}],[0.5 \sqrt{\beta}, 0.6 \sqrt{\beta}]\right\rangle\right\}, 0 \leq \alpha \leq 1,0 \leq \beta \leq 1$.
$j_{\alpha, \beta}(A)=\left\{\left\langle x_{1},\left[(0.04+0.71 \alpha)^{\frac{1}{2}},(0.09+0.55 \alpha)^{\frac{1}{2}}\right],[0.5 \sqrt{\beta}, 0.6 \sqrt{\beta}]\right\rangle\right\}$,
$0 \leq \alpha \leq 0.3125,0 \leq \beta \leq 1$.
$H_{\alpha, \beta}(A)=\left\{\left\langle x_{1},[0.5 \sqrt{\alpha}, 0.6 \sqrt{\alpha}],\left[(0.04+0.71 \beta)^{\frac{1}{2}},(0.09+0.55 \beta)^{\frac{1}{2}}\right]\right\rangle\right\}$,
$0 \leq \alpha \leq 1,0 \leq \beta \leq 0.3125$.
$h_{\alpha, \beta}(A)=\left\{\left\langle x_{1},[0.2 \sqrt{\alpha}, 0.3 \sqrt{\alpha}],\left[(0.25+0.71 \beta)^{\frac{1}{2}},(0.36+0.55 \beta)^{\frac{1}{2}}\right]\right\rangle\right\}$,
$0 \leq \alpha \leq 1,0 \leq \beta \leq 0.6875$.

4. Conclusion

We have introduced newly defined modal types of operators over Baloui's generalized interval valued intuitionistic fuzzy sets and their relationships are proved. We show that these operators are $\operatorname{GIVIF} S_{B}$. These operators are well defined since, if $\delta=1, M_{A U}(x)=M_{A L}(x)$, and $N_{A U}(x)=N_{A L}(x)$, the results agree with IFS by replacing the new requirements related to α and β. In future, the application of these operators will be proposed and other operators over GIVIFS S_{B} are to be introduced. Some open problems are as follows: definition of level operator, negation operator and other types over GIVIFS S_{B} and study their properties.

References

1. J.Y. Ahn, K.S. Han, S.Y. Oh and C.D. Lee, An application of interval-valued intuitionistic fuzzy sets for medical diagnosis of headache, International Journal of Innovative Computing, Information and Control 7 (2011), 2755-2762.
2. K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96.
3. K.T. Atanassov and G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31 (1989), 343-349.
4. K.T. Atanassov, Operations over interval valued fuzzy set, Fuzzy Sets and Systems 64 (1994), 159-174.
5. K.T. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets and Systems 33 (1989), 37-45.
6. K.T. Atanassov, On four intuitionistic fuzzy topological operators, Math Ware Soft Comput. 8 (2001), 65-70.
7. K.T. Atanassov, On the modal operators deferent over the intuitionistic fuzzy set, NIFS 10 (2004), 7-12.
8. K.T. Atanassov and D. Dimitrov, On the negations over intuitionistic fuzzy sets, Annual of "Informatics" Section Union of Scientists in Bulgaria 1 (2008), 49-58.
9. M. Bhowmik and M. Pal, Partition of generalized interval-valued intuitionistic fuzzy sets and some properties, International Journal of Applied Mathematical Analysis and Applications 4 (2009), 1-10.
10. M. Bhowmik and M. Pal, Generalized interval-valued intuitionistic fuzzy sets, The Journal of Fuzzy Mathematics 18 (2010), 357-371.
11. M. Bhowmik and M. Pal, Some results on generalized interval-valued intuitionistic fuzzy sets, International Journal of Fuzzy Systems 14 (2012).
12. S.M. Chen, M.W. Yang, S.W. Yang, T.W. Sheu and C.J. Liau, Multicriteria fuzzy decision making based on interval-valued intuitionistic fuzzy sets, Expert Systems with Applications 39 (2012), 12085-12091.
13. C.J. Hinde and K.T. Atanassov, On intuitionistic fuzzy negations and intuitionistic fuzzy modal operators with contradictory evidence, 5th WSEAS / IASME International Conference on ENGINEERING EDUCATION (EE'08), Heraklion, Greece, July (2008), 22-24.
14. E.Baloui Jamkhaneh and S. Nadarajah, A New generalized intuitionistic fuzzy sets, Hacettepe Journal of Mathematics and Statistics 44 (2015), 1537-1551.
15. E.Baloui Jamkhaneh, New generalized interval value intuitionistic fuzzy sets, Research and Communications in Mathematics and Mathematical Sciences 5 (2015), 33-46.
16. S. Jose and S. Kuriakose, Algorithm for solving an assignment model in intuitionistic fuzzy context, International Journal of Fuzzy Mathematics and Systems 3 (2013), 345-349.
17. C. Kahraman, S.C. Onar, B. Oztaysi, A comparison of wind energy investment alternatives using interval valued intuitionistic fuzzy benefit/cost analysis, Sustainability 8 (2016), 118.
18. D.F. Li, Decision and Game Theory in Management With Intuitionistic Fuzzy Sets, Springer, 2013.
19. D.F. Li, Linear programming method for MADM with interval-valued intuitionistic fuzzy sets, Expert Systems with Applications 37 (2010), 5939-5945.
20. D.F. Li, TOPSIS-based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets, Fuzzy Systems, IEEE Transactions on 18 (2010), 299-311.
21. D.F. Li, Closeness coefficient based nonlinear programming method for interval-valued intuitionistic fuzzy multiattribute decision making with incomplete preference information, Applied Soft Computing 11 (2011), 3402-3418.
22. J. Liu, Y. Li, X. Deng, D. Wei and Y. Deng, Multi-attribute decision-making based on interval-valued intuitionistic fuzzy sets, Journal of Information \& Computational Science 9 (2012), 1107-1114.
23. T.K. Mondal and S.K. Samanta, Topology of interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 119 (2001), 483-494.
24. S.C. Onar, B. Oztaysi, İ. Otay, C. Kahraman, Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets, Energy 90 (2015), 274-285.
25. T. Pathinathan, J. Jon Arockiaraj, P. Ilavarasi, An Application of Interval Valued Intuitionistic Fuzzy Sets in Medical Diagnosis Using Logical Operators, International Journal of Computing Algorithm 3 (2014).
26. X.W. Qi, C.Y. Liang and J. Zhang, Some generalized dependent aggregation operators with interval-valued intuitionistic fuzzy information and their application to exploitation investment evaluation, Journal of Applied Mathematics 2013 (2013), Article ID 705159, 24 pages.
27. A. Shabani and E. Baloui Jamkhaneh, A new generalized intuitionistic fuzzy number, Journal of Fuzzy Set Valued Analysis (2014), 1-10.
28. R. Srinivasan and N. Palaniappan, Some operators on intuitionistic fuzzy sets of root type, Annals of Fuzzy Mathematics and Informatics 4 (2012), 377-383.
29. S. Tyagi, Reliability analysis of a powerloom plant using interval valued intuitionistic fuzzy sets, Applied Mathematics 5 (2014), 2008-2015.
30. W. Wang and X. Liu, Interval-valued intuitionistic fuzzy hybrid weighted averaging operator based on Einstein operation and its application to decision making, Journal of Intelligent \& Fuzzy Systems 25 (2013), 279-290.
31. Z. Xiao and G. Wei, Application interval-valued intuitionistic fuzzy set to select supplier, Fuzzy Systems and Knowledge Discovery, 2008. FSKD '08, Fifth International Conference on 3 (2011), 351-355.
32. Z.S. Xu and C.H.E.N. Jian, Approach to group decision making based on interval-valued intuitionistic judgment matrices, Systems Engineering-Theory \& Practice 27 (2007), 126133.
33. Z. Xu, Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making, Control and Decision 22 (2007), 215.
34. Z. Yue, An approach to aggregating interval numbers into interval-valued intuitionistic fuzzy information for group decision making, Expert Systems with Applications 38 (2011), 6333-6338.
35. Z. Zhang, J. Yang, Y. Ye and Q. S. Zhang, A generalized interval valued intuitionistic fuzzy sets theory, Procedia Engineering 15 (2011), 2037-2041.
36. S. Zhang, D. Yu, Y. Wang and W. Zhang, Evaluation about the performance of Egovernment based on interval-valued intuitionistic fuzzy set, The Scientific World Journal 2014 (2014), Article ID 234241, 10 pages.
37. Z. Zhang, M. Wang, Y. Hu, J. Yang, Y. Ye and Y. Li, A dynamic interval-valued intuitionistic fuzzy sets applied to pattern pecognition, Mathematical Problems in Engineering 2013 (2013), Article ID 408012, 16 pages.

Ezzatallah Baloui Jamkhaneh received his M.Sc. at Ferdowsi University of Mashhad and Ph.D at Islamic Azad University, Science and Research Branch. He is an Associate Professor at Islamic Azad University of Iran. His research interests include fuzzy reliability, fuzzy quality control, intuitionistic fuzzy sets theory.
Department of Statistics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran. email: e_baloui2008@yahoo.com

[^0]: Received September 8, 2016. Revised February 25, 2017. Accepted June 8, 2017.
 (c) 2017 Korean SIGCAM and KSCAM.

