DOI QR코드

DOI QR Code

A joint probability distribution model of directional extreme wind speeds based on the t-Copula function

  • Quan, Yong (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University) ;
  • Wang, Jingcheng (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University) ;
  • Gu, Ming (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University)
  • 투고 : 2017.01.20
  • 심사 : 2017.08.10
  • 발행 : 2017.09.25

초록

The probabilistic information of directional extreme wind speeds is important for precisely estimating the design wind loads on structures. A new joint probability distribution model of directional extreme wind speeds is established based on observed wind-speed data using multivariate extreme value theory with the t-Copula function in the present study. At first, the theoretical deficiencies of the Gaussian-Copula and Gumbel-Copula models proposed by previous researchers for the joint probability distribution of directional extreme wind speeds are analysed. Then, the t-Copula model is adopted to solve this deficiency. Next, these three types of Copula models are discussed and evaluated with Spearman's rho, the parametric bootstrap test and the selection criteria based on the empirical Copula. Finally, the extreme wind speeds for a given return period are predicted by the t-Copula model with observed wind-speed records from several areas and the influence of dependence among directional extreme wind speeds on the predicted results is discussed.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation

참고문헌

  1. Burnham, K.P. and Anderson, D. (2003), Model selection and multi-model inference: a practical informationtheoretic approach, Springer Science & Business Media, Berlin, Germany.
  2. Cook, N.J. and Harris, R.I. (2004), "Exact and general FT1 penultimate distributions of extreme wind speeds drawn from tail-equivalent Weibull parents", Struct. Saf., 26(4), 391-420. https://doi.org/10.1016/j.strusafe.2004.01.002
  3. Cook, N.J. (1983), "Note on directional and seasonal assessment of extreme winds for design", J. Wind Eng. Ind. Aerod., 12(3), 365-372. https://doi.org/10.1016/0167-6105(83)90057-0
  4. Cook, N.J. and Harris, R.I. (2008), "Postscript to 'Exact and general FT1 penultimate distributions of extreme wind speeds drawn from tail-equivalent Weibull parents'", Struct. Saf., 30(1), 1-10. https://doi.org/10.1016/j.strusafe.2006.04.001
  5. Cook, N.J. and Miller, C.A. (1999), "Further note on directional assessment of extreme winds for design", J. Wind Eng. Ind. Aerod., 79(3), 201-208. https://doi.org/10.1016/S0167-6105(98)00109-3
  6. Deheuvels, P. (1979), "La fonction de dependance empirique et ses proprietes. Un test non parametrique d'independance", Acad. Roy. Belg. Bull. Cl. Sci., 65(6), 274-292.
  7. Durrleman, V., Nikeghbali, A. and Roncalli, T. (2000), "Which Copula is the right one?", Available at SSRN: https://ssrn.com/abstract=1032545 or http://dx.doi.org/10.2139/ssrn.1032545
  8. Embrechts, P., Lindskog, F. and McNeil, A. (2001), Modelling dependence with Copulas, Rapport technique, Departement de mathematiques, Institut Federal de Technologie de Zurich, Zurich, Zurich, Switzerland.
  9. Embrechts, P., McNeil, A. and Straumann, D. (2002), "Correlation and dependence in risk management: properties and pitfalls", Risk management: value at risk and beyond, 176-223.
  10. Falk, M., Hüsler, J. and Reiss, R.D. (2010), Laws of small numbers: extremes and rare events, Springer Science & Business Media, Berlin, Germany.
  11. Fang, H.B., Fang, K.T. and Kotz, S. (2002), "The meta-elliptical distributions with given marginals", J. Multivariate Anal., 82(1), 1-16. https://doi.org/10.1006/jmva.2001.2017
  12. Genest, C. and Remillard, B. (2008). "Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models", Annales De L Institut Henri Poincare Probabilites Et Statistiques, 44(6), 1096-1127. https://doi.org/10.1214/07-AIHP148
  13. Genest, C. and Rivest, L.P. (1989), "A characterization of Gumbel's family of extreme value distributions", Stat. Probabil. Lett., 8(3), 207-211. https://doi.org/10.1016/0167-7152(89)90123-5
  14. Genest, C., Remillard, B. and Beaudoin, D. (2009), "Goodness-of-fit tests for Copulas: A review and a power study", Insurance: Mathematics and economics, 44(2), 199-213. https://doi.org/10.1016/j.insmatheco.2007.10.005
  15. Haraguchi, K. and Kanda, J. (1999), "Probability model for annual maximum wind speeds in multi-direction', Wind Engineering into the21st Century, Copenhagen, Denmark, June 21-24.
  16. Härdle, W. and Simar, L. (2007), Applied multivariate statistical analysis, Springer Science & Business Media, Berlin, Germany.
  17. Harris, R.I. (1996), "Gumbel re-visited - a new look at extreme value statistics applied to wind speeds", J. Wind Eng. Ind. Aerod., 59(1), 1-22. https://doi.org/10.1016/0167-6105(95)00029-1
  18. Harris, R.I. (1999), "Improvements to the Method of Independent Storms", J. Wind Eng. Ind. Aerod., 80(1-2), 1-30. https://doi.org/10.1016/S0167-6105(98)00123-8
  19. Harris, R.I. (2004), "Extreme value analysis of epoch maxima-convergence, and choice of asymptote", J. Wind Eng. Ind. Aerod., 92(11), 897-918. https://doi.org/10.1016/j.jweia.2004.05.003
  20. Harris, R.I. (2006), "Errors in GEV analysis of wind epoch maxima from Weibull parents", Wind Struct., 9(3), 179-191. https://doi.org/10.12989/was.2006.9.3.179
  21. Harris, R.I. (2009), "XIMIS, a penultimate extreme value method suitable for all types of wind climate", J. Wind Eng. Ind. Aerod., 97(5-6), 271-286. https://doi.org/10.1016/j.jweia.2009.06.011
  22. Harris, R.I. (2014), "A simulation method for the macro-meteorological wind speed and the implications for extreme value analysis", J. Wind Eng. Ind. Aerod., 125, 146-155. https://doi.org/10.1016/j.jweia.2013.12.003
  23. Holmes, J.D. and Moriarty, W.W. (1999), "Application of the generalized Pareto distribution to extreme value analysis in wind engineering", J. Wind Eng. Ind. Aerod., 83(1), 1-10. https://doi.org/10.1016/S0167-6105(99)00056-2
  24. Itoi, T. and Kanda, J. (2002), "Comparison of correlated Gumbel probability models for directional maximum wind speeds", J. Wind Eng. Ind. Aerod., 90(12), 1631-1644. https://doi.org/10.1016/S0167-6105(02)00275-1
  25. Jaworski, P., Durante, F., Hardle, W.K. and Rychlik, T. (2010), Copula theory and its applications, Springer Science & Business Media, Berlin, Germany.
  26. Kanda, J. and Itoi, T. (2001), "Correlated Gumbel probability model for directional wind speeds", Structural Safety and Reliability: ICOSSAR'01, Newport Beach, CA, USA, June 17-22.
  27. Kasperski, M. (2007), "Design wind loads for a low-rise building taking into account directional effects", J. Wind Eng. Ind. Aerod., 95(9-11), 1125-1144. https://doi.org/10.1016/j.jweia.2007.01.019
  28. Lagomarsino, S., Piccardo, G. and Solari, G. (1992), "Statistical analysis of high return period wind speeds", J. Wind Eng. Ind. Aerod., 41(1-3), 485-496. https://doi.org/10.1016/0167-6105(92)90452-G
  29. Lindskog, F., Mcneil, A. and Schmock, U. (2003), "Kendall's tau for elliptical distributions", Contributions to Economics, 149-156.
  30. Meng, Y., Matsui, M. and Hibi, K. (1995), "An analytical model for simulation of the wind field in a typhoon boundary layer", J. Wind Eng. Ind. Aerod., 56(2-3), 291-310. https://doi.org/10.1016/0167-6105(94)00014-5
  31. Nikoloulopoulos, A.K., Joe, H. and Li, H. (2009), "Extreme value properties of multivariate t Copulas", Extremes, 12(2), 129-148. https://doi.org/10.1007/s10687-008-0072-4
  32. Sibuya, M. (1959), "Bivariate extreme statistics, I", Annal. Inst. Stat. Math., 11(2), 195-210. https://doi.org/10.1007/BF01682329
  33. Simiu, E. and Heckert, N.A. (1996), "Extreme wind distribution tails: a "peaks over threshold" approach", J. Struct. Eng., 122(5), 539-547. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:5(539)
  34. Simiu, E., Heckert, N.A., Filliben, J.J. and Johnson, S.K. (2001), "Extreme wind load estimates based on the Gumbel distribution of dynamic pressures: an assessment", Struct. Saf., 23(3), 221-229. https://doi.org/10.1016/S0167-4730(01)00016-9
  35. Simiu, E., Hendrickson, E.M., Nolan, W.A., Olkin, I. and Spiegelman, C.H. (1985), "Multivariate distributions of directional wind speeds", J. Struct. Eng., 111(4), 939-943. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(939)
  36. Sklar, M. (1959), "Fonctions de repartition A n dimensions et leurs marges", Publ. Inst. Stat. Univ. Paris, 8, 229-231.
  37. Torrielli, A., Repetto, M.P. and Solari, G. (2011), "Long-term simulation of the mean wind speed", J. Wind Eng. Ind. Aerod., 99(11), 1139-1150. https://doi.org/10.1016/j.jweia.2011.08.003
  38. Torrielli, A., Repetto, M.P. and Solari, G. (2013), "Extreme wind speeds from long-term synthetic records", J. Wind Eng. Ind. Aerod., 115(2), 22-38. https://doi.org/10.1016/j.jweia.2012.12.008
  39. Torrielli, A., Repetto, M.P. and Solari, G. (2014), "A refined analysis and simulation of the wind speed macrometeorological components", J. Wind Eng. Ind. Aerod., 132, 54-65. https://doi.org/10.1016/j.jweia.2014.05.006
  40. Trivedi, P.K. and Zimmer, D.M. (2007), "Copula modeling: an introduction for practitioners", Foundations and Trends(R) in Econometrics, 1(1), 1-111.
  41. Whelan, N. (2004), "Sampling from archimedean copulas", Quantitative finance, 4(3), 339-352. https://doi.org/10.1088/1469-7688/4/3/009
  42. Xiao, Y.F., Duan, Z.D., Xiao, Y.Q., Ou, J.P., Chang, L. and Li, Q.S. (2011), "Typhoon wind hazard analysis for southeast China coastal regions", Struct. Saf., 33(4), 286-295. https://doi.org/10.1016/j.strusafe.2011.04.003
  43. Zhang, B. (2014), "Research on the fully probabilistic method of the extreme wind pressure on buildings", M.E. Dissertations, Tongji University, Shanghai, China.
  44. Zhang, X. and Chen, X. (2015), "Assessing probabilistic wind load effects via a multivariate extreme wind speed model: A unified framework to consider directionality and uncertainty", J. Wind Eng. Ind. Aerod., 147(2015), 30-42. https://doi.org/10.1016/j.jweia.2015.09.002
  45. Zhang, X. and Chen, X. (2016), "Influence of dependence of directional extreme wind speeds on wind load effects with various mean recurrence intervals", J. Wind Eng. Ind. Aerod., 148(2016), 45-56. https://doi.org/10.1016/j.jweia.2015.11.005

피인용 문헌

  1. Evaluation of full-order method for extreme wind effect estimation considering directionality vol.32, pp.3, 2017, https://doi.org/10.12989/was.2021.32.3.193