참고문헌
- ASTM C1383-15 (2015), Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- Bjurstrom, H. and Ryden, N. (2016), "Detecting the thickness mode frequency in a concrete plate using backward wave propagation", J. Acoust. Soc. Am., 139(2), 649-657. https://doi.org/10.1121/1.4941250
- Carino, N.J., Sansalone, M. and Hsu, N.N. (1986), "A point source-point receiver, pulse-wcho technique for flaw detection in concrete", ACI J., 83(2), 199-208.
- Chatzi, E.N. and Fuggini, C. (2015), "Online correction of drift in structural identification using artificial white noise observations and an unscented Kalman filter", Smart Struct. Syst., 16(2), 295-328. https://doi.org/10.12989/sss.2015.16.2.295
- Choi, H., Shams, S. and Azari, H. (2017) "Frequency-wave number domain analysis of air-coupled impact-echo in concrete slab", J. Infrastr. Syst.
- Choi, H., Song, H., Tran, Q.N., Roesler, J.R. and Popovics, J.S. (2016), "Contactless system for continuous monitoring of earlyage concrete properties", Concrete Int., 38(9), 35-41.
- Clorennec, D., Prada, C. and Royer, D. (2007), "Local and noncontact measurements of bulk acoustic wave velocities in thin isotropic plates and shells using zero group velocity Lamb modes", J. Appl. Phys., 101, 034908. https://doi.org/10.1063/1.2434824
- Dai, X., Zhu, J., Tsai, Y.T. and Haberman, M.R. (2011), "Use of parabolic reflector to amplify in-air signals generated during impact-echo testing", J. Acoust. Soc. Am., 130(4), EL167-EL172. https://doi.org/10.1121/1.3632106
- Gholizadeh, S., Leman, Z. and Baharudin, B.T.H.T. (2015), "A review of the application of acoustic emission technique in engineering", Struct. Eng. Mech., 54(6), 1075-1095. https://doi.org/10.12989/sem.2015.54.6.1075
- Gibson, A. and Popovics, J.S. (2015), "Lamb wave basis for impact-echo method analysis", J. Eng. Mech., 131(4), 438-443.
- Gomez, P., Fernandez-Alvarez, J.P., Ares, A. and Fernandez, E. (2017), "Guided-wave approach for Spectral peaks characterization of impact-echo tests in layered systems", J. Infrastr. Syst., 1(1), 0417009.
- Groschup, R. and Grosse, C.U. (2015), "MEMS microphone array sensor for air-coupled impact-echo", Sensor., 15(7), 14932-14945. https://doi.org/10.3390/s150714932
- Hung, C.C., Lin, W.T., Cheng, A. and Pai, K.C. (2017), "Concrete compressive strength identification by impact-echo method", Comput. Concrete, 20(1), 49-55. https://doi.org/10.12989/CAC.2017.20.1.049
- Ji, Q., Ho, M., Zheng, R., Ding, Z. and Song, G. (2015), "An exploratory study of stress wave communication in concrete structures", Smart Struct. Syst., 15(1), 135-150. https://doi.org/10.12989/sss.2015.15.1.135
- Kee, S.H. and Gucunski, N. (2016), "Interpretation of flexural vibration modes from impact-echo testing", J. Infrastr. Syst., 22(3), 04160009.
- Kibar, H. and Ozturk, T. (2015), "Determination of concrete quality with destructive and non-destructive methods", Comput. Concrete, 15(3), 473-484. https://doi.org/10.12989/cac.2015.15.3.473
- Kim, G.J., Park, S.J. and Kwak, H.G. (2017), "Experimental characterization of ultrasonic nonlinearity in concrete under cyclic change of prestressing force", Comput. Concrete, 19(5), 599-607. https://doi.org/10.12989/cac.2017.19.5.599
- Munoz-Abella, B., Rubio, L. and Rubio, P. (2012), "A nondestructive method for elliptical cracks identification in shafts based on wave propagation signals and genetic algorithms", Smart Struct. Syst., 10(1), 47-65. https://doi.org/10.12989/sss.2012.10.1.047
- Oh, T., Popovics, J.S. and Sim, S.H. (2013), "Analysis of vibration for regions above rectangular delamination defects in solids", J. Sound Vibr., 332(7) 1766-1776. https://doi.org/10.1016/j.jsv.2012.11.003
- Ongpeng, J., Soberano, M., Oreta, A. and Hirose, S. (2017), "Artificial neural network model using ultrasonic test results to predict compressive stress in concrete", Comput. Concrete, 19(1), 59-68. https://doi.org/10.12989/cac.2017.19.1.059
- Park, C.B. (2011), "Imaging dispersion of MASW data-full vs. selective offset scheme", J. Environ. Eng. Geophys., 16(1), 13-23. https://doi.org/10.2113/JEEG16.1.13
- Popovics, J.S., Song, W., Achenbach, J.D., Lee, J.H. and Andre, R.F. (1998), "One-sided stress wave velocity measurements in concrete", J. Eng. Mech., 123(12), 1346-1353.
- Prada, C. and Clorennec, D. (2009), "Influence of the anisotropy on zero-group velocity lamb modes", J. Acoust. Soc. Am., 126(2), 620-625. https://doi.org/10.1121/1.3167277
- Sadeghi, J. and Rezvani, F.H. (2015), "Development of nondestructive method of detecting steel bars corrosion in bridge decks", Struct. Eng. Mech., 46(5), 615-627. https://doi.org/10.12989/sem.2013.46.5.615
- Sheena, N.Y., Huangb, J.L. and Le, H.D. (2013), "Predicting strength development of RMSM using ultrasonic pulse velocity and artificial neural network", Comput. Concrete, 12(6), 785-802. https://doi.org/10.12989/cac.2013.12.6.785
- Song, H. and Popovics, J.S. (2017), "Characterization of steelconcrete interface bonding conditions using attenuation characteristics of guided waves", Cement Concrete Compos., 83, 111-124. https://doi.org/10.1016/j.cemconcomp.2017.07.001
- Wright, P. (2010), "Assessment of London underground tube tunnels-investigation, monitoring and analysis", Smart Struct. Syst., 6(3), 239-262. https://doi.org/10.12989/sss.2010.6.3.239
- Zhu, J. and Popovics, J.S. (2007), "Imaging concrete structures using air-coupled impact-echo", J. Eng. Mech., 133(6), 628-640. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:6(628)
피인용 문헌
- Deep learning models for bridge deck evaluation using impact echo vol.263, pp.None, 2017, https://doi.org/10.1016/j.conbuildmat.2020.120109
- The prediction of compressive strength and non-destructive tests of sustainable concrete by using artificial neural networks vol.27, pp.1, 2017, https://doi.org/10.12989/cac.2021.27.1.021