References
- C. Birkar, Singularities of linear systems and boundedness of Fano varieties, http://arxiv.org/abs/1609.05543.
- M. J. Collins, On Jordans theorem for complex linear groups, J. Group Theory 10 (2007), no. 4, 411-423. https://doi.org/10.1515/JGT.2007.032
- C. W. Curtis and I. Reiner, Representation theory of finite groups and associative al-gebras, Pure and Applied Mathematics, Vol. XI. Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962.
- I. V. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge University Press, 1st edition, 2012.
- I. V. Dolgachev and V. A. Iskovskikh, Finite subgroups of the plane Cremona group, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, Progr. Math., vol. 269 (2009), Birkhauser Boston, Inc., Boston, MA., 443-558.
- I. V. Dolgachev and V. A. Iskovskikh, On elements of prime order in the plane Cremona group over a perfect field, Int. Math. Res. Notices 2009 (2009), no. 18, 3467-3485.
- T. Hosoh, Automorphism groups of quartic del Pezzo surfaces, J. Algebra 185 (1996), no. 2, 374-389. https://doi.org/10.1006/jabr.1996.0331
- T. Hosoh, Automorphism groups of cubic surfaces, J. Algebra 192 (1997), no. 2, 651-677. https://doi.org/10.1006/jabr.1996.6968
- I. M. Isaacs, Finite group theory, volume 92 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2008.
- J. Kollar, Real Algebraic Surfaces, Notes of the 1997 Trento summer school lectures, preprint.
- J. Patera and Y. Saint-Aubin, Finite subgroups of the Lorentz group and their generating functions, Symmetries in Science, Springer (1980), 297-308.
- V. L. Popov, On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties, Affine algebraic geometry, 289-11, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011.
- V. L. Popov, Finite subgroups of diffeomorphism groups, Proc. Steklov Inst. Math. 289 (2015), no. 1, 221-226. https://doi.org/10.1134/S0081543815040148
- Yu. Prokhorov and C. Shramov, Jordan property for Cremona groups, Amer. J. Math. 138 (2016), no. 2, 403-418. https://doi.org/10.1353/ajm.2016.0017
- Yu. Prokhorov and C. Shramov, Jordan constant for Cremona group of rank 3, http://arxiv.org/abs/1608.00709.
- M. F. Robayo, Prime order birational diffeomorphisms of the sphere, Annali Sc. Norm. Super. Pisa, Cl. Sci. (5) XVI (2016), 909-970.
- J.-P. Serre, Le groupe de Cremona et ses sous-groupes finis, Seminaire Bourbaki 1000 (2008), 75-100.
- J.-P. Serre, A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field, Mosc. Math. J. 9 (2009), no. 1, 193-208.
-
A. Trepalin, Rationality of the quotient of
${\mathbb{P}}^2$ by finite group of automorphisms over arbitrary field of characteristic zero, Cent. Eur. J. Math. 12 (2014), no. 2, 229-239. - E. Yasinsky, Subgroups of odd order in the real plane Cremona group, J. Algebra 461 (2016), 87-120. https://doi.org/10.1016/j.jalgebra.2016.04.019
- Yu. Prokhorov and C. Shramov, Finite groups of birational selfmaps of threefolds, https://arxiv.org/abs/1611.00789.
- Yu. Prokhorov and C. Shramov, p-subgroups in the space Cremona group, https://arxiv.org/pdf/1610.02990.pdf.