DOI QR코드

DOI QR Code

Nonlocal thermo-electro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam

  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Daman, Mohsen (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
  • 투고 : 2017.03.25
  • 심사 : 2017.07.26
  • 발행 : 2017.09.25

초록

To peruse the free vibration of curved functionally graded piezoelectric (FGP) nanosize beam in thermal environment, nonlocal elasticity theory is applied for modeling the nano scale effect. The governing equations are obtained via the energy method. Analytically Navier solution is employed to solve the governing equations for simply supported boundary conditions. Solving these equations enables us to estimate the natural frequency for curved FGP nanobeam under the effect of a uniform temperature change and external electric voltage. The results determined are verified by comparing the results by available ones in literature. The effects of various parameters such as nonlocality, uniform temperature changes, external electric voltage, gradient index, opening angle and aspect ratio of curved FGP nanobeam on the natural frequency are successfully discussed. The results revealed that the natural frequency of curved FGP nanobeam is significantly influenced by these effects.

키워드

참고문헌

  1. Akbas, S.D. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
  2. Beldjelili, Y. (2016), "Hygro-thermo-mechanical bending of SFGM plates resting on variable elastic foundations using a fourvariable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  3. Beni, Y.T. (2016), "Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling", Mech. Res. Commun., 75, 67-80. https://doi.org/10.1016/j.mechrescom.2016.05.011
  4. Benjeddou, A. (2009), "New insights in piezoelectric freevibrations using simplified modeling and analyses", Smart Struct. Syst., 5(6), 591-612. https://doi.org/10.12989/sss.2009.5.6.591
  5. Daulton, T.L., Bondi, K.S. and Kelton, K.F. (2010), "Nanobeam diffraction fluctuation electron microscopy technique for structural characterization of disordered materials-Application to Al 88- x Y 7 Fe 5 Ti x metallic glasses", Ultramicroscopy, 110(10), 1279-1289. https://doi.org/10.1016/j.ultramic.2010.05.010
  6. Doroushi, A., Eslami, M.R. and Komeili, A. (2011), "Vibration analysis and transient response of an FGPM beam under thermo-electro-mechanical loads using higher-order shear deformation theory", J. Intel. Mat. Syst. Str., 22(3), 231-243. https://doi.org/10.1177/1045389X11398162
  7. Ebrahimi F. and Rastgoo, A. (2008a), "Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers", Smart Mater. Struct., 17, 015044. https://doi.org/10.1088/0964-1726/17/1/015044
  8. Ebrahimi F. and Rastgoo, A. (2008b), "An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory", Thin. Wall. Struct., 46, 1402-1408. https://doi.org/10.1016/j.tws.2008.03.008
  9. Ebrahimi F., Rastgoo, A. and Atai, A.A. (2009a), "Theoretical analysis of smart moderately thick shear deformable annular functionally graded plate", Eur. J. Mech. - A Solids, 28, 962-997. https://doi.org/10.1016/j.euromechsol.2008.12.008
  10. Ebrahimi, F. (2013), "Analytical investigation on vibrations and dynamic response of functionally graded plate integrated with piezoelectric layers in thermal environment", Mech. Adv. Mater. Struct., 20(10), 854-870. https://doi.org/10.1080/15376494.2012.677098
  11. Ebrahimi, F. and Barati, M.R. (2016), "A nonlocal higher-order shear deformation beam theory for vibration analysis of sizedependent functionally graded nanobeams", Arabian J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  12. Ebrahimi, F. and Barati, M.R. (2016a), "Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams", Eur. Phys. J. Plus, 131(9), 346. https://doi.org/10.1140/epjp/i2016-16346-5
  13. Ebrahimi, F. and Barati, M.R. (2016b), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014
  14. Ebrahimi, F. and Barati, M.R. (2016c), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", Int. J. Smart Nano Mater., 1-25.
  15. Ebrahimi, F. and Barati, M.R. (2016d), "An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams", Adv. Nano Res., 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
  16. Ebrahimi, F. and Barati, M.R. (2016e), "Buckling analysis of smart size-dependent higher order magneto-electro-thermoelastic functionally graded nanosize beams", J. Mech., 1-11.
  17. Ebrahimi, F. and Barati, M.R. (2016f), "A nonlocal higher-order shear deformation beam theory for vibration analysis of sizedependent functionally graded nanobeams", Arabian J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  18. Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 1077546316646239. https://doi.org/10.1177/1077546316646239
  19. Ebrahimi, F. and Barati, M.R. (2016h), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazilian Soc. Mech. Sci. Eng., 1-16.
  20. Ebrahimi, F. and Barati, M.R. (2016i), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., (just-accepted).
  21. Ebrahimi, F. and Barati, M.R. (2016j), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
  22. Ebrahimi, F. and Barati, M.R. (2016k), "Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams", Eur. Phys. J. Plus, 131(7), 1-14. https://doi.org/10.1140/epjp/i2016-16001-3
  23. Ebrahimi, F. and Barati, M.R. (2016l), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
  24. Ebrahimi, F. and Barati, M.R. (2016m), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
  25. Ebrahimi, F. and Barati, M.R. (2016n), "Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 1-13.
  26. Ebrahimi, F. and Barati, M.R. (2016o), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2
  27. Ebrahimi, F. and Barati, M.R. (2016p), "Electromechanical buckling behavior of smart piezoelectrically actuated higherorder size-dependent graded nanoscale beams in thermal environment", Int. J. Smart Nano Mater., 7(2), 69-90. https://doi.org/10.1080/19475411.2016.1191556
  28. Ebrahimi, F. and Barati, M.R. (2016q), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122(9), 843. https://doi.org/10.1007/s00339-016-0368-1
  29. Ebrahimi, F. and Barati, M.R. (2016r), "Flexural wave propagation analysis of embedded S-FGM nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory", Arabian J. Sci. Eng., 1-12.
  30. Ebrahimi, F. and Barati, M.R. (2016s), "On nonlocal characteristics of curved inhomogeneous Euler-Bernoulli nanobeams under different temperature distributions", Appl. Phys. A, 122(10), 880. https://doi.org/10.1007/s00339-016-0399-7
  31. Ebrahimi, F. and Barati, M.R. (2016t), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intel. Mat. Syst. Str., 1045389X16672569. https://doi.org/10.1177/1045389X16672569
  32. Ebrahimi, F. and Barati, M.R. (2016u), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910. https://doi.org/10.1007/s00339-016-0441-9
  33. Ebrahimi, F. and Barati, M.R. (2016v), "Magnetic field effects on dynamic behavior of inhomogeneous thermo-piezo-electrically actuated nanoplates", J. Brazilian Soc. Mech. Sci. Eng., 1-21.
  34. Ebrahimi, F. and Barati, M.R. (2017a), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092
  35. Ebrahimi, F. and Barati, M.R. (2017b), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058
  36. Ebrahimi, F. and Daman, M. (2016), "An investigation of radial vibration modes of embedded double-curved-nanobeam systems", Cankaya Univ. J. Sci. Eng., 13, 58-79.
  37. Ebrahimi, F. and Daman, M. (2016), "Dynamic modeling of embedded curved nanobeams incorporating surface effects", Coupled Syst. Mech., 5(3), 255-267. https://doi.org/10.12989/csm.2016.5.3.255
  38. Ebrahimi, F. and Daman, M. (2016), "Investigating surface effects on thermomechanical behavior of embedded circular curved nanosize beams", J. Eng.
  39. Ebrahimi, F. and Daman, M. (2017), "Analytical investigation of the surface effects on nonlocal vibration behavior of nanosize curved beams", Adv. Nano Res., 5(1), 35-47. https://doi.org/10.12989/anr.2017.5.1.035
  40. Ebrahimi, F. and Hosseini, S.H.S. (2016a), "Double nanoplatebased NEMS under hydrostatic and electrostatic actuations", Eur. Phys. J. Plus, 131(5), 1-19. https://doi.org/10.1140/epjp/i2016-16001-3
  41. Ebrahimi, F. and Hosseini, S.H.S. (2016b), "Nonlinear electroelastic vibration analysis of NEMS consisting of doubleviscoelastic nanoplates", Appl. Phys. A, 122(10), 922. https://doi.org/10.1007/s00339-016-0452-6
  42. Ebrahimi, F. and Hosseini, S.H.S. (2016c), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Thermal Stresses, 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
  43. Ebrahimi, F. and Mokhtari, M. (2015), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Brazilian Soc. Mech. Sci. Eng., 37(4), 1435-1444. https://doi.org/10.1007/s40430-014-0255-7
  44. Ebrahimi, F. and Nasirzadeh, P. (2015), "A nonlocal Timoshenko beam theory for vibration analysis of thick nanobeams using differential transform method", J. Theor. Appl. Mech., 53(4), 1041-1052.
  45. Ebrahimi, F. and Rastgoo, A. (2008c), "Free vibration analysis of smart FGM plates", Int. J. Mech. Syst. Sci. Eng., 2(2), 94-99.
  46. Ebrahimi, F. and Salari, E. (2015), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronautica, 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031
  47. Ebrahimi, F. and Salari, E. (2015), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B: Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
  48. Ebrahimi, F. and Salari, E. (2015), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. Part B: Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068
  49. Ebrahimi, F. and Salari, E. (2015a), "Size-dependent thermoelectrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
  50. Ebrahimi, F. and Salari, E. (2015b), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronautica, 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031
  51. Ebrahimi, F. and Salari, E. (2015c), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. B, 79 (2015c) 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
  52. Ebrahimi, F. and Salari, E. (2015d), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES: Comput. Model. Eng. Sci., 105, 151-181.
  53. Ebrahimi, F. and Salari, E. (2015e), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
  54. Ebrahimi, F. and Salari, E. (2015f), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. B, 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068
  55. Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23(12), 1379-1397. https://doi.org/10.1080/15376494.2015.1091524
  56. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837
  57. Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronautica, 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014
  58. Ebrahimi, F., & Shaghaghi, G. R. (2016). Thermal effects on nonlocal vibrational characteristics of nanobeams with nonideal boundary conditions. smart structures and systems, 18(6), 1087-1109.
  59. Ebrahimi, F., Barati, M.R. and Haghi, P. (2017), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Therm. Stresses, 40(5), 535-547. https://doi.org/10.1080/01495739.2016.1230483
  60. Ebrahimi, F., Barati, M.R. and Haghi, P. (2017), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Therm. Stresses, 40(5), 535-547. https://doi.org/10.1080/01495739.2016.1230483
  61. Ebrahimi, F., Ehyaei, J. and Babaei, R. (2016), "Thermal buckling of FGM nanoplates subjected to linear and nonlinear varying loads on Pasternak foundation", Adv. Mater. Res., 5(4), 245-261. https://doi.org/10.12989/amr.2016.5.4.245
  62. Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015b), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Tech., 29, 1207-1215. https://doi.org/10.1007/s12206-015-0234-7
  63. Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Tech. 29, 1207-1215. https://doi.org/10.1007/s12206-015-0234-7
  64. Ebrahimi, F., Ghasemi, F. and Salari, E. (2016a), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y
  65. Ebrahimi, F., Jafari, A. (2016), "Buckling behavior of smart MEEFG porous plate with various boundary conditions based on refined theory", Adv. Mater. Res., 5(4), 261-276.
  66. Ebrahimi, F., Naei, M.H. and Rastgoo, A. (2009b), "Geometrically nonlinear vibration analysis of piezoelectrically actuated FGM plate with an initial large deformation", J. Mech. Sci. Technol., 23(8), 2107-2124. https://doi.org/10.1007/s12206-009-0358-8
  67. Ebrahimi, F., Rastgoo, A. and Kargarnovin, M.H. (2008), "Analytical investigation on axisymmetric free vibrations of moderately thick circular functionally graded plate integrated with piezoelectric layers", J. Mech. Sci. Technol., 22(6), 1058-1072. https://doi.org/10.1007/s12206-008-0303-2
  68. Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stresses, 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
  69. Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2016c), "In-plane thermal loading effects on vibrational characteristics of functionally graded nanobeams", Meccanica, 51(4), 951-977. https://doi.org/10.1007/s11012-015-0248-3
  70. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016
  71. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
  72. Eringen, A.C. (2002), Nonlocal continuum field theories, Springer Science & Business Media.
  73. Hosseini-Hashemi, S., Nahas, I., Fakher, M. and Nazemnezhad, R. (2014), "Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity", Acta Mechanica, 225(6), 1555. https://doi.org/10.1007/s00707-013-1014-z
  74. Hosseini, S.A.H. and Rahmani, O. (2016), "Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model", Appl. Phys. A, 122(3), 1-11.
  75. Hu, B., Ding, Y., Chen, W., Kulkarni, D., Shen, Y., Tsukruk, V.V., and Wang, Z.L. (2010), "External-strain induced insulating phase transition in VO2 nanobeam and its application as flexible strain sensor", Adv. Mater., 22(45), 5134-5139. https://doi.org/10.1002/adma.201002868
  76. Jandaghian, A.A. and Rahmani, O. (2016), "An analytical solution for free vibration of piezoelectric nanobeams based on a nonlocal elasticity theory", J. Mech., 32(2), 143-151. https://doi.org/10.1017/jmech.2015.53
  77. Juang, J.Y., Bogy, D.B. and Bhatia, C.S. (2007), "Design and dynamics of flying height control slider with piezoelectric nanoactuator in hard disk drives", J. Tribology, 129(1), 161-170. https://doi.org/10.1115/1.2401208
  78. Kananipour, H., Ahmadi, M. and Chavoshi, H. (2014), "Application of nonlocal elasticity and DQM to dynamic analysis of curved nanobeams", Latin Am. J. Solids Struct., 11(5), 848-853. https://doi.org/10.1590/S1679-78252014000500007
  79. Ke, L.L. and Wang, Y.S. (2012), "Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory", Smart Mater. Struct., 21(2), 025018. https://doi.org/10.1088/0964-1726/21/2/025018
  80. Ke, L.L., Wang, Y.S. and Reddy, J.N. (2014), "Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions", Compos. Struct., 116, 626-636. https://doi.org/10.1016/j.compstruct.2014.05.048
  81. Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023
  82. Komijani, M., Reddy, J.N. and Eslami, M.R. (2014), "Nonlinear analysis of microstructure-dependent functionally graded piezoelectric material actuators", J. Mech. Phys. Solids, 63, 214-227. https://doi.org/10.1016/j.jmps.2013.09.008
  83. Komijani, M., Reddy, J.N. and Eslami, M.R. (2014), "Nonlinear analysis of microstructure-dependent functionally graded piezoelectric material actuators", J. Mech. Phys. Solids, 63, 214-227. https://doi.org/10.1016/j.jmps.2013.09.008
  84. Li, C., Lim, C.W. and Yu, J.L. (2010), "Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load", Smart Mater. Struct., 20(1), 015023. https://doi.org/10.1088/0964-1726/20/1/015023
  85. Li, L. and Hu, Y. (2017), "Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory", Compos. Struct., 172, 242-250. https://doi.org/10.1016/j.compstruct.2017.03.097
  86. Liu, J.J., Chen, L., Xie, F., Fan, X.L. and Li, C. (2016), "On bending, buckling and vibration of graphene nanosheets based on the nonlocal theory", Smart Struct. Syst., 17(2), 257-274. https://doi.org/10.12989/sss.2016.17.2.257
  87. Malekzadeh, P., Haghighi, M.G. and Atashi, M.M. (2010), "Outof-plane free vibration of functionally graded circular curved beams in thermal environment", Compos. Struct., 92(2), 541-552. https://doi.org/10.1016/j.compstruct.2009.08.040
  88. Malgaca, L. and Karagulle, H. (2009), "Simulation and experimental analysis of active vibration control of smart beams under harmonic excitation", Smart Struct. Syst., 5(1), 55-68. https://doi.org/10.12989/sss.2009.5.1.055
  89. Murmu, T. and Adhikari, S. (2010), "Nonlocal effects in the longitudinal vibration of double-nanorod systems", Physica E: Low-dimensional Syst. Nanostruct., 43(1), 415-422. https://doi.org/10.1016/j.physe.2010.08.023
  90. Murmu, T. and Adhikari, S. (2010), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys., 108(8), 083514. https://doi.org/10.1063/1.3496627
  91. Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006
  92. Rahmani, O. and Noroozi Moghaddam, M.H. (2014), "On the vibrational behavior of piezoelectric nano-beams", Adv. Mater. Res., 829, 790-794, Trans Tech Publications.
  93. Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
  94. Setoodeh, A., Derahaki, M. and Bavi, N. (2015), "DQ thermal buckling analysis of embedded curved carbon nanotubes based on nonlocal elasticity theory", Latin Am. J. Solids Struct., 12(10), 1901-1917. https://doi.org/10.1590/1679-78251894
  95. Shen, H.S. (2016), Functionally graded materials: nonlinear analysis of plates and shells, CRC press.
  96. Shen, J.P., Li, C., Fan, X.L. and Jung, C.M. (2017), Dynamics of silicon nanobeams with axial motion subjected to transverse and longitudinal loads considering nonlocal and surface effects.
  97. Tadi Beni, Y. (2016), "Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams", J. Intel. Mat. Syst. Str., 27(16), 2199-2215. https://doi.org/10.1177/1045389X15624798
  98. Wan, Q., Li, Q.H., Chen, Y.J., Wang, T.H., He, X.L., Li, J.P. and Lin, C.L. (2004), "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors", Appl. Phys. Lett., 84(18), 3654-3656. https://doi.org/10.1063/1.1738932
  99. Wang, C.M. and Duan, W.H. (2008), "Free vibration of nanorings/arches based on nonlocal elasticity", J. Appl. Phys., 104(1), 014303. https://doi.org/10.1063/1.2951642
  100. Wang, Q. and Varadan, V.K. (2006), "Vibration of carbon nanotubes studied using nonlocal continuum mechanics", Smart Mater. Struct., 15(2), 659. https://doi.org/10.1088/0964-1726/15/2/050
  101. Wang, Z.L. and Song, J. (2006), "Piezoelectric nanogenerators based on zinc oxide nanowire arrays", Science, 312(5771), 242-246. https://doi.org/10.1126/science.1124005
  102. Yan, Z. and Jiang, L. (2011), "Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects", J. Phys. D: Appl. Phys., 44(36), 365301. https://doi.org/10.1088/0022-3727/44/36/365301
  103. Zehetner, C. and Irschik, H. (2008), "On the static and dynamic stability of beams with an axial piezoelectric actuation", Smart Struct. Syst., 4(1), 67-84. https://doi.org/10.12989/sss.2008.4.1.067
  104. Zhang, Y.Y., Wang, C.M. and Challamel, N. (2009), "Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model", J. Eng. Mech. - ASCE, 136(5), 562-574.

피인용 문헌

  1. Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2017, https://doi.org/10.12989/anr.2021.10.3.281
  2. Vibration analysis of sandwich beam with honeycomb core and piezoelectric facesheets affected by PD controller vol.28, pp.2, 2017, https://doi.org/10.12989/sss.2021.28.2.195