Acknowledgement
Supported by : Korea Institute of Machinery & Materials, Hongik University
References
- Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
- Amichi, K. and Atalla, N. (2009), "A new 3D finite element for sandwich beams with a viscoelastic core", J. Vib. Acoust., 131(2), 021010. https://doi.org/10.1115/1.3025828
- Arfken, G.B. and Weber, H.J. (2005), Mathematical Methods for Physicists, Academic Press, London.
- Bae, S.H., Cho, J.R. and Jeong, W.B. (2016), "Free and transient responses of linear complex stiffness system by Hilbert transform and convolution integral," Smart Struct. Syst., 17(5), 753-771. https://doi.org/10.12989/sss.2016.17.5.753
- Bae, S.H., Cho, J.R., Bae, S.R. and Jeong, W.B. (2014), "A discrete convolutional Hilbert transform with the consistent imaginary initial conditions for the time-domain analysis of five-layered viscoelastic sandwich beam", Comput. Meth. Appl. Mech. Eng., 268, 245-263. https://doi.org/10.1016/j.cma.2013.09.010
- Barkanov, E., Rikards, R., Holste, C. and Tager, O. (2000), "Transient response of sandwich viscoelastic beams, plates, and shells under impulse loading", Mech. Compos. Mater., 36(3), 215-222. https://doi.org/10.1007/BF02681873
- Bonisoli, E. and Mottershead, J.E. (2004), "Complex-damped dynamic systems in the time and frequency domains", J. Shock Vib., 11, 209-225. https://doi.org/10.1155/2004/849417
- Chen, J.T. and You, D.W. (1999), "An integral-differential equation approach for the free vibration of a SDOF system with hysteretic damping", Adv. Eng. Softw., 30(1), 43-48. https://doi.org/10.1016/S0965-9978(98)00061-1
- Crandall, S.H. (1970), "The role of damping in vibration theory", J. Sound Vib., 11(1), 3-18 https://doi.org/10.1016/S0022-460X(70)80105-5
- Feldman, M. (2011), Hilbert Transform in Mechanical Vibration, John Wiley & Sons, Ltd., Chichester, UK.
- Gaul, L., Bohlen, S. and Kempfle, S. (1985), "Transient and forced oscillations of systems with constant hysteretic damping", Mech. Res. Commun., 12(4), 187-201. https://doi.org/10.1016/0093-6413(85)90057-6
- Genta, G. and Amati, N. (2010), "Hysteretic damping in rotordynamics: An equivalent formulation", J. Sound Vib., 329(22), 4772-4784. https://doi.org/10.1016/j.jsv.2010.04.036
- Henwood, D.J. (2002), "Approximating the hysteretic damping matrix by a viscous matrix for modelling in the time domain", J. Sound Vib., 254(3), 575-593. https://doi.org/10.1006/jsvi.2001.4136
- Inaudi, J.A. and Makris, N. (1996), "Time-domain analysis of linear hysteretic damping", Earthq. Eng. Struct. D., 25(6), 529-545. https://doi.org/10.1002/(SICI)1096-9845(199606)25:6<529::AID-EQE549>3.0.CO;2-P
- Johansson, M. (1999), The Hilbert Transform, Master Thesis, Mathematics, Vaxjo University.
- Li, Z., Qiao, G., Sun, Z., Zhao, H. and Guo, R. (2012), "Short baseline positioning with an improved time reversal technique in a multi-path channel", J. Mar. Sci. Appl., 11(2), 251-257. https://doi.org/10.1007/s11804-012-1130-5
- Mohammadi, F. and Sedaghati, R. (2012), "Linear and nonlinear vibration analysis of sandwich cylindrical shell with constrained viscoelastic core layer", Int. J. Mech. Sci., 54(1), 156-171. https://doi.org/10.1016/j.ijmecsci.2011.10.006
- Nashif, A.D., Jones, D.I.G. and Henderson, J.P. (1985), Vibration Damping, Wiley, New York.
- Padois, T., Prax, C., Valeau, V. and Marx, D. (2012), "Experimental localization of an acoustic sound source in a wind-tunnel flow by using a numerical time-reversal technique", Acoust. Soc. Am., 132(4), 2397. https://doi.org/10.1121/1.4747015
- Soroka, W.W. (2012), "Note on the relations between viscous and structural damping coefficients," J. Aeronaut. Sci., 16(7), 409-410. https://doi.org/10.2514/8.11822
- Wang, Q., Yuan, S., Hong, M. and Su, Z. (2015), "On time reversal-based signal enhancement for active lamb wave-based damage identification", Smart Struct. Syst., 15(6), 1463-1479. https://doi.org/10.12989/sss.2015.15.6.1463
- Won, S.G., Bae, S.H., Cho, J.R., Bae, S.R. and Jeong, W.B. (2013), "Three-layered damped beam element for forced vibration analysis of symmetric sandwich structures with a viscoelastic core", Finite Elem. Anal. Des., 68, 39-51. https://doi.org/10.1016/j.finel.2013.01.004
- Won, S.G., Bae, S.H., Jeong, W.B. and Cho, J.R. (2012), "Forced vibration analysis of damped beam structures with composite cross-section using Timoshenko beam element", Struct. Eng. Mech., 43(1), 15-30. https://doi.org/10.12989/sem.2012.43.1.015
- Zhu, H., Hu, Y. and Pi, Y. (2014), "Transverse hysteretic damping characteristics of a serpentine belt: Modeling and experimental investigation", J. Sound Vib., 333(25), 7019-7035. https://doi.org/10.1016/j.jsv.2014.06.020