Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Ayres, J.W., Lalande, F., Chaudhry, Z. and Rogers, C.A. (1998), "Qualitative impedance-based health monitoring of civil infrastructures", Smart Mater. Struct., 7, 599-605. https://doi.org/10.1088/0964-1726/7/5/004
- Giurgiutiu, V. and Zagrai, A. (2005), "Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method", Struct. Health Monit., 4(2), 99-118. https://doi.org/10.1177/1475921705049752
- Ho, D.D., Ngo, T.M. and Kim, J.T. (2014), "Impedance-based damage monitoring of steel column connection:numerical simulation", Struct. Monit. Maint., 1(3), 339-356. https://doi.org/10.12989/SMM.2014.1.3.339
- Huynh, T.C. and Kim, J.T. (2014), "Impedance-based cable force monitoring in tendon-anchorage using portable PZT-interface technique", Math. Probl. Eng., 2014, 1-11.
- Huynh, T.C. and Kim, J.T. (2016), "Compensation of temperature effect on impedance responses of PZT interface for prestress-loss monitoring in PSC girders", Smart Struct. Syst., 17(6), 881-901. https://doi.org/10.12989/sss.2016.17.6.881
- Huynh, T.C. and Kim, J.T. (2017), "Quantitative damage identification in tendon anchorage via PZT interfacebased impedance monitoring technique", Smart Struct. Syst., 20(2), 181-195. https://doi.org/10.12989/SSS.2017.20.2.181
- Huynh, T.C., Lee, K.S. and Kim, J.T. (2015a), "Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation", Smart Struct. Syst., 15(2), 375-393. https://doi.org/10.12989/sss.2015.15.2.375
- Huynh, T.C., Park, Y.H., Park, J.H. and Kim, J.T. (2015b), "Feasibility verification of mountable PZTinterface for impedance monitoring in tendon-anchorage", J. Shock Vib., 2015, 1-11.
- Kim, J.T., Huynh, T.C. and Lee, S.Y. (2014), "Wireless structural health monitoring of stay cables under two consecutive typhoons", Struct.l Monit. Maint., 1(1), 47-67.
- Kim, J.T., Park, J.H., Hong, D.S. and Park, W.S. (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32, 115-128. https://doi.org/10.1016/j.engstruct.2009.08.021
- Kim, J.T., Sim, S.H., Cho, S., Yun, C.B. and Min, JY. (2016), "Recent R&D activities on structural health monitoring in Korea", Struct. Monit. Maint., 3(1), 91-114. https://doi.org/10.12989/SMM.2016.3.1.091
- Li, H.N., Yi, T.H., Ren, L., Li, D.S. and Huo, L.S. (2014), "Review on innovations and applications in structural health monitoring for infrastructures", Struct. Monit. Maint., 1(1), 1-45. https://doi.org/10.12989/SMM.2014.1.1.001
- Li, H.N., Li, D.S., Ren, L., Yi, T.H., Jia, Z.G. and LI, K.P. (2016), "Structural health monitoring of innovative civil engineering structures in Mainland China", Struct. Monit. Maint., 3(1), 1-32. https://doi.org/10.12989/SMM.2016.3.1.001
- Liang, C., Sun, F.P. and Rogers, C.A. (1994), "Coupled electro-mechanical analysis of adaptive material - Determination of the actuator power consumption and system energy transfer", J. Intel. Mat. Syst. Str., 5, 12-20. https://doi.org/10.1177/1045389X9400500102
- Mascarenas, D, Todd, M.D., Park, G. and Farrar, C.R. (2007), "Development of an impedance-based wireless sensor node for structural health monitoring", Smart Mater. Struct., 16(6), 2137-2145. https://doi.org/10.1088/0964-1726/16/6/016
- Nagarajaiah, S. and Erazo, K. (2016), "Structural monitoring and identification of civil infrastructure in the United States", Struct. Monit. Maint., 3(1), 51-69. https://doi.org/10.12989/smm.2016.3.1.051
- Nguyen, K.D. and Kim, J.T. (2012), "Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection", Smart Struct. Syst., 9(6), 489-504. https://doi.org/10.12989/sss.2012.9.6.489
- Park, G., Sohn, H., Farrar, C. and Inman, D. (2003), "Overview of piezoelectric impedance-based health monitoring and path forward", Shock Vib. Digest, 35(6), 451-463. https://doi.org/10.1177/05831024030356001
- Park, J.H., Huynh, T.C. and Kim, J.T. (2015), "Temperature effect on wireless impedance monitoring in tendon anchorage of prestressed concrete girder", Smart Struct. Syst., 15(4), 1159-1175. https://doi.org/10.12989/sss.2015.15.4.1159
- Park, J.H., Kim, J.T., Hong, D.S., Mascarenas, D. and Lynch, J.P. (2010), "Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements", Smart Struct. Syst., 6(5), 711-730. https://doi.org/10.12989/sss.2010.6.5_6.711
- Park, S., Park, G., Yun, C.B. and Farrar, C.R. (2008), "Sensor self-diagnosis using a modified impedance model for active sensing-based structural health monitoring", Struct. Health Monit., doi: 10.1177/1475921708094792.
- Soh, C.K., Tseng, K.K., Bhalla, S. and Gupta, A. (2000), "Performance of smart piezoceramic patches in health monitoring of a RC bridge", Smart Mater. Struct., 9, 533-542. https://doi.org/10.1088/0964-1726/9/4/317
- Sun, F.P., Chaudhry Z., Liang, C. and Rogers C.A. (1995), "Truss structure integrity identification using PZT sensor-actuator", J. Intel. Mat. Syst. Str., 6, 134-139. https://doi.org/10.1177/1045389X9500600117
- Xu, Y.G. and Liu, G.R. (2002), "A modified electro-mechanical impedance model of piezoelectric actuatorsensors for debonding detection of composite patches", J. Intel. Mat. Syst. Str., 13, 389-396. https://doi.org/10.1177/104538902761696733
Cited by
- Effect of Raindrop Size Distribution on Rain Load and Its Mechanism in Analysis of Transmission Towers vol.18, pp.9, 2017, https://doi.org/10.1142/s0219455418501158