References
- Li P, Song Y, Wang S, Tao Z, Yu S, Liu Y. Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation. Ultrason. Sonochem. 2015;22:132-138. https://doi.org/10.1016/j.ultsonch.2014.05.025
- Sha Y, Mathew I, Cui Q, et al. Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles. Chemosphere 2016;144:1530-1535. https://doi.org/10.1016/j.chemosphere.2015.10.040
- Li Y, Zhang FS. Catalytic oxidation of Methyl Orange by an amorphous FeOOH catalyst developed from a high iron-containing fly ash. Chem. Eng. J. 2010;158:148-153. https://doi.org/10.1016/j.cej.2009.12.021
- Netpradit S, Towprayoon P, Thiravetyan S. Adsorption of three azo reactive dyes by metal hydroxide sludge: Effect of temperature, pH, and electrolytes. J. Colloid Interface Sci. 2004;270:255-261. https://doi.org/10.1016/j.jcis.2003.08.073
- Subramonian W, Wu TY. Effect of enhancers and inhibitors on photocatalytic sunlight treatment of methylene blue. Water Air Soil Pollut. 2014;225:1-15.
- Teh CY, Budiman PM, Shak KPY, Wu TY. Recent advancement of coagulation-flocculation and its application in wastewater treatment. Ind. Eng. Chem. Res. 2016;55:4363-4389. https://doi.org/10.1021/acs.iecr.5b04703
- Nidheesh P, Gandhimathi R, Ramesh S. Degradation of dyes from aqueous solution by Fenton processes : A review. Environ. Sci. Pollut. Res. 2013;20:2099-2132. https://doi.org/10.1007/s11356-012-1385-z
- Fang ZQ, Qiu XQ, Chen JH, Qiu XH. Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor. Appl. Catal. B-Environ. 2010;100:221-228. https://doi.org/10.1016/j.apcatb.2010.07.035
-
Subramonian W, Wu TY, Chai SP. Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic
$Fe_2O_3-TiO_2$ : Treatment efficiency and characterizations of reused photocatalyst. J. Environ. Manage. 2017;187:298-310. https://doi.org/10.1016/j.jenvman.2016.10.024 - Shih YH, Tso CP, Tung LY. Tung, Rapid degradation of methyl orange with nanoscale zerovalent iron particles. J. Environ. Eng. Manage. 2010;20:137-143.
- Yuan N, Zhang G, Guo S, Wan Z. Enhanced ultrasoundassisted degradation of methyl orange and metronidazole by rectorite-supported nanoscale zero-valent iron. Ultrason. Sonochem. 2016;28:62-68. https://doi.org/10.1016/j.ultsonch.2015.06.029
- Li H, Guo J, Yang L, Lan Y. Degradation of methyl orange by sodium persulfate activated with zero-valent zinc. Sep. Purif. Technol. 2014;132:168-173. https://doi.org/10.1016/j.seppur.2014.05.015
- Singh J, Yang JK, Chang YY. Rapid degradation of phenol by ultrasound-dispersed nano-metallic particles (NMPs) in the presence of hydrogen peroxide: A possible mechanism for phenol degradation in water. J. Environ. Manage. 2016;175:60-66. https://doi.org/10.1016/j.jenvman.2016.03.025
- Singh J, Yang JK, Chang YY. Synthesis of nano zero-valent metals from the leaching liquor of automobile shredder residue: A mechanism and potential applications for phenol degradation in water. Process Saf. Environ. 2016;102:204-213. https://doi.org/10.1016/j.psep.2016.03.013
- Chand R, Ince NH, Gogate PR, Bremner DH. Phenol degradation using 20, 300 and 520 kHz ultrasonic reactors with hydrogen peroxide, ozone and zero valent metals. Sep. Purif. Technol. 2009;67:103-109. https://doi.org/10.1016/j.seppur.2009.03.035
- Singh J, Lee BK. Pollution control and metal resource recovery for low grade automobile shredder residue: A mechanism, bioavailability and risk assessment. Waste Manage. 2015;38:271-283. https://doi.org/10.1016/j.wasman.2015.01.035
-
Singh J, Yang JK, Chang YY. Quantitative analysis and reduction of the eco-toxicity risk of heavy metals for the fine fraction of automobile shredder residue (ASR) using
$H_2O_2$ . Waste Manage. 2016;48:374-382. https://doi.org/10.1016/j.wasman.2015.09.030 - Singh J, Lee BK. Hydrometallurgical recovery of heavy metals from low-grade automobile shredder residue (ASR): An application of an advanced Fenton process (AFP). J. Environ. Manage. 2015;161:1-10. https://doi.org/10.1016/j.jenvman.2015.06.034
-
Teh CY, Wu TY, Juan JC. Facile sonochemical synthesis of N,Cl-codoped
$TiO_2$ : Synthesis effects, mechanism and photocatalytic performance. Catal. Today 2015;256:365-374. https://doi.org/10.1016/j.cattod.2015.02.014 - Rasheed QJ, Pandian K, Muthukumar K. Treatment of petroleum refinery wastewater by ultrasound-dispersed nanoscale zero-valent iron particles. Ultrason. Sonochem. 2011;18: 1138-1142. https://doi.org/10.1016/j.ultsonch.2011.03.015
- Zha SX, Cheng Y, Gao Y, Chen ZL, Megharaj M, Naidu R. Nanoscale zerovalent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. Chem. Eng. J. 2014;255:141-148. https://doi.org/10.1016/j.cej.2014.06.057
-
Haeberle J, Henkel K, Gargouri H, et al. Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited
$Al_2O_3$ films. Beilstein J. Nanotechnol. 2013;4:732-742. https://doi.org/10.3762/bjnano.4.83 - Kim JH, Cho S, Bae TS, Lee YS. Enzyme biosensor based on an N-doped activated carbon fiber electrode prepared by a thermal solid-state reaction. Sens. Actuators B-Chem 2014;197:20-27. https://doi.org/10.1016/j.snb.2014.02.054
- Biesinger MC, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010;257:887-898. https://doi.org/10.1016/j.apsusc.2010.07.086
- Dong G, Ai Z, Zhang L. Total aerobic destruction of azo contaminants with nanoscale zero-valent copper at neutral pH: Promotion effect of in-situ generated carbon center radicals. Water Res. 2014;66:22-30. https://doi.org/10.1016/j.watres.2014.08.011
- Ilton ES, Post JE, Heaney PJ, Ling FT, Kerisit SN. XPS determination of Mn oxidation states in Mn (hydr) oxides. Appl. Surf. Sci. 2016;366:475-485. https://doi.org/10.1016/j.apsusc.2015.12.159
- Morozov IG, Belousova OV, Ortega D, Mafina MK, Kuznetcov MV. Structural, optical, XPS and magnetic properties of Zn particles capped by ZnO nanoparticles. J. Alloy. Compd. 2015;633:237-245. https://doi.org/10.1016/j.jallcom.2015.01.285
- Xu L, Wang J. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J. Hazard. Mater. 2011;186:256-264. https://doi.org/10.1016/j.jhazmat.2010.10.116
- Babuponnusami A, Muthukumar K. Removal of phenol by heterogeneous photo electro Fenton-like process using nano-zero valent iron. Sep. Purif. Technol. 2012;98:130-135. https://doi.org/10.1016/j.seppur.2012.04.034
- Houa L, Wang L, Royer S, Zhang H. Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. J. Hazard. Mater. 2016;302:458-467. https://doi.org/10.1016/j.jhazmat.2015.09.033
- Rao Y, Yang H, Xue D, Guo Y, Qi F, Ma J. Sonolytic and sonophotolytic degradation of Carbamazepine: Kinetic and mechanisms. Ultrason. Sonochem. 2016;32:371-379. https://doi.org/10.1016/j.ultsonch.2016.04.005
- Weiping X, Yan Q, Dingmin L, Dan S, Dewen H. Degradation of m-xylene solution using ultrasonic irradiation. Ultrason. Sonochem. 2011;18:1077-1081. https://doi.org/10.1016/j.ultsonch.2011.03.014
-
Cheng Z, Fu F, Pang Y, Tang B, Lu J. Removal of phenol by acid-washed zero-valent aluminium in the presence of
$H_2O_2$ . Chem. Eng. J. 2015;260:284-290. https://doi.org/10.1016/j.cej.2014.09.012
Cited by
- Surface modified nanostructured-TiO2 thin films for removal of Congo red vol.35, pp.10, 2018, https://doi.org/10.1007/s11814-018-0114-9
- Removal of Organic Colorants Using Nano Copper Antimony Oxychloride Synthesized by Non-solvated System pp.1574-1451, 2019, https://doi.org/10.1007/s10904-018-01063-2
- Facile Synthesis of SnO 2 Aerogel/Reduced Graphene Oxide Nanocomposites via in Situ Annealing for the Photocatalytic Degradation of Methyl Orange vol.9, pp.3, 2019, https://doi.org/10.3390/nano9030358
- A nanoscale “yarn ball”-like heteropoly blue catalyst for extremely efficient elimination of antibiotics and dyes vol.245, pp.None, 2017, https://doi.org/10.1016/j.jenvman.2019.05.119
- A comparative study on applicability of nano-sized iron(II, III) oxide in ultrasonicated Fenton process vol.25, pp.1, 2017, https://doi.org/10.4491/eer.2018.277
- Green synthesis of silver nanoparticles, characterization and evaluation of their photocatalytic dye degradation activity vol.4, pp.None, 2017, https://doi.org/10.1016/j.crgsc.2021.100195
- Green Synthesis of Iron Nanoparticles Using Plumeria and Jatropha: Characterization and Investigation of Their Adsorption, Regeneration and Catalytic Degradation Efficiencies vol.11, pp.4, 2021, https://doi.org/10.1007/s12668-021-00894-7