DOI QR코드

DOI QR Code

원적외선 카메라를 이용한 표면영상유속계의 비가시 환경 적용성 검토

A study on the applicability of invisible environment of surface image velocimeter using far infrared camera

  • 배인혁 (동의대학교 공과대학 토목공학과) ;
  • 류권규 (동의대학교 공과대학 토목공학과) ;
  • 윤병만 (명지대학교 공과대학 토목환경공학과) ;
  • 김서준 (명지대학교 공과대학 토목환경공학과)
  • Bae, Inhyuk (Department of Civil Engineering, Dong-eui University) ;
  • Yu, Kwonkyu (Department of Civil Engineering, Dong-eui University) ;
  • Yoon, Byungman (Department of Civil & Environmental Engineering, Myongji University) ;
  • Kim, Seojun (Department of Civil & Environmental Engineering, Myongji University)
  • 투고 : 2017.06.05
  • 심사 : 2017.07.18
  • 발행 : 2017.09.30

초록

본 연구에서는 표면영상유속계의 한계점으로 지적되어 온 야간이나 안개시 적용 문제를 해결하기 위해, 원적외선 카메라를 이용한 표면영상유속계의 적용성을 검토하였다. 이를 위해 각 조건에 대한 원적외선 카메라의 측정 정확도 평가 실험을 진행하였다. 정확도 평가는 기존에 검증이 된 주간 조건의 일반카메라를 이용한 표면영상유속계 측정 결과에 대한 상대 오차를 산정하여 평가하였다. 결과적으로 원적외선 카메라를 이용한 표면영상유속계의 야간 측정 상대 오차는 최대 4.3%, 평균 1% 내외로 매우 낮게 나타나 정확도가 높음을 확인하였고, 안개 조건 또한 최대 5.2%, 평균 2% 내외로 매우 높은 정확도를 보였다. 이에 따라 일반 카메라로 수면 흐름을 가시화할 수 없던 비가시 환경에서 원적외선 카메라를 이용하는 경우 높은 정확도로 측정이 가능할 것으로 판단된다.

In this study, the applicability of the surface image velocimeter using the far-infrared camera was examined in order to solve the application problem of the measurement in night time, which has been pointed out in previous studies as the limit of the surface image velocimeter. For this purpose, the accuracy evaluation of measurement of the far-infrared camera was conducted for two conditions. Accuracy was evaluated by calculating the relative error of the results of the measurements of surface image velocimeter using the normal video camera during the daytime that was already verified. As a result, the relative error of the surface velocimeter using the far infrared camera was 4.3% at maximum, the average error was about 1%, and the error of the fog condition was maximum 5.2% with an average of 2%. In conclusion, it is possible to measure with high accuracy when using far-infrared camera in a invisible environments where the water flow can not be visualized with a general camera.

키워드

참고문헌

  1. Bae, I. (2017). A study on application of surface image velocimeter using far infrared ray in non-visible environment condition, M. Sc. dissertation, Myongji University (in Korean).
  2. Fujita, I. (2013). "Utilization of far-infrared-ray camera for imagebased measurement of river flow and discharge." Nagare, Vol. 32, pp. 347-352 (in Japanese).
  3. Fujita, I., Hara, H., and Yorozuya, A. (2011). "Measurement accuracy of non-contact discharge measurement method using river monitoring movie and development of quasi real time measurement system." Annual Journal of Hydraulic Engineering, Japan Society of Civil Engineers, Vol. 55, pp. S1177-S1182 (in Japanese).
  4. Fujita, I., Kosaka, T., Yorozuya, A., and Motonaga, Y. (2013). "Surface flow measurement of snow melt flood by using a far infrared camera." J. of Japan Society of Civil Engineers, B1, Vol. 69, No. 4, pp.I_703-I_708. (in Japanese)
  5. Fujita, I., Muste, M., and Kruger, A. (1998). "Large-scale particle image velocimetry for flow analysis in hydraulic application." Journal of Hydraulic Research, Vol. 36, No. 3, pp. 397-414. https://doi.org/10.1080/00221689809498626
  6. Kaplan, H. (2007). Practical applications of infrared thermal sensing and imaging equipment, SPIE.
  7. Kim, S. J., Yu, K., and Yoon, B. M. (2010). "Development of a velocity measurement method at night time using an infrared camera." Proc. of 2010 Annual Conference, KWRA (in Korean).
  8. Kim, S. J., Yu, K., and Yoon, B. M. (2013). "Error analysis of image velocimetry according to the variation of the interrogation area." Journal of Korea Water Resources Association, Vol. 46, No. 8, pp. 821-831 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.8.821
  9. Kim, S. J., Yu, K., Yoon, B. M., Bae, I., and Yu, B. (2015). "Consideration of far infrared cameras for measuring surface flow velocity in night time." Proc. of the 36th IAHR Congress, the Hague, the Netherlands.
  10. Kim, Y. S., Yang, S. K., Yu, K., and Kim, D. S. (2014). "Flood runoff calculation using disaster monitoring CCTV system." Journal of Environmental Science International, Vol. 23, No. 4, pp. 571-584 (in Korean). https://doi.org/10.5322/JESI.2014.4.571
  11. Rantz, S. E. (1982). Measurement and computation of streamflow: Volume 1. Measurement of stage and discharge, Volume 2. Computation of discharge, USGS Water Supply Paper 2175.
  12. Roh, Y. (2005). Development of river discharge measurement technique using image analysis. Ph. D. dissertation, Myongji University (in Korean).
  13. Yu, K., and Hwang, J. G. (2016). "Development of a real-time surface image velocimeter using an Android smartphone." Journal of Korea Water Resources Association, Vol. 49, No. 6, pp. 469-480 (in Korean). https://doi.org/10.3741/JKWRA.2016.49.6.469
  14. Yu, K., Kim, S., Yoo, B., and Bae, I. (2015). "Evaluation of far infrared camera for surface image velocimeter versatile in day and night measurement." Journal of Korea Water Resources Association, Vol. 48, No. 8, pp. 659-672 (in Korean). https://doi.org/10.3741/JKWRA.2015.48.8.659