과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China
참고문헌
- Au, S.K. and Zhang, F.L. (2012), "Fast Bayesian ambient modal iidentification incorporating multiple setups", J. Eng. Mech., 138(7), 800-815. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000385
- Au, S.K. and Zhang, F.L. (2016), "Fundamental two-stage formulation for Bayesian system identification, Part I: General theory", Mech. Syst. Signal Pr., 66-67, 31-42. https://doi.org/10.1016/j.ymssp.2015.04.025
- Baghmisheh, M.T.V., Peimani, M., Sadeghi, M.H., Ettefagh, M.M. and Tabrizi, A.F. (2012), "A hybrid particle swarm-Nelder-Mead optimization method for crack detection in cantilever beams", Appl. Soft Comput., 12(8), 2217-2226. https://doi.org/10.1016/j.asoc.2012.03.030
- Beck, J.L., Au, S.K. and Vanik, M.W. (1999), "Bayesian probabilistic approach to structural health monitoring", J. Eng. Mech., 126(7), 738-745. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(738)
- Beck, J.L., Au, S.K. and Vanik, M.W. (2002), "Monitoring structural health using a probabilistic measure", Comput. Aid. Civil Inf., 16(1), 1-11.
- Begambre, O. and Laier, J.E. (2009), "A hybrid particle swarm optimization - simplex algorithm (PSOS) for structural damage identification", Adv. Eng. Softw., 40(9), 883-891. https://doi.org/10.1016/j.advengsoft.2009.01.004
- Chen, B. and Xu, Y.L. (2007), "A new damage index for detecting sudden change of structural stiffness", Struct. Eng. Mech., 26(26), 315-341. https://doi.org/10.12989/sem.2007.26.3.315
- Chen, Z.P. and Yu, L. (2015). "An improved PSO-NM algorithm for structural damage detection", International Conference on Swarm Intelligence, Beijing, China, June.
- Cheung, S.H. and Beck, J.L. (2009), "Bayesian model updating using hybrid monte carlo simulation with application to structural dynamic models with many uncertain parameters", J. Eng. Mech., 135(4), 243-255. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:4(243)
- Ching, J. and Beck, J.L. (2004), "Bayesian analysis of the phase II IASC-ASCE structural health monitoring experimental benchmark data", J. Eng. Mech., 130(10), 1233-1244. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:10(1233)
- Farrar, C.R. and Worden, K. (2007), "An introduction to structural health monitoring", Philos. Tran. A, 365(1851), 1-17.
- Friswell, M.I. (2008), "Damage identification using inverse methods", Philos. Tran. A, 365(1851), 393-410.
- Gerist, S. and Maheri, M.R. (2016), "Multi-stage approach for structural damage detection problem using basis pursuit and particle swarm optimization", J. Sound. Vib., 384, 210-226. https://doi.org/10.1016/j.jsv.2016.08.024
- Jensen, H.A., Esse, C., Araya, V. and Papadimitriou, C. (2017), "Implementation of an adaptive meta-model for Bayesian finite element model updating in time domain", Reliab. Eng. Syst. Saf., 160, 174-190. https://doi.org/10.1016/j.ress.2016.12.005
- Johnson, E.A., Lam, H.F., Katafygiotis, L.S. and Beck, J.L. (2004), "Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data", J. Eng. Mech., 130(1), 3-15. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(3)
- Katafygiotis, L.S. and Yuen, K.V. (2001), "Bayesian spectral density approach for modal updating using ambient data", Earthq. Eng. Struct. D., 30(8), 1103-1123. https://doi.org/10.1002/eqe.53
- Li, Y.Y. and Chen, Y. (2013), "A review on recent development of vibration-based structural robust damage detection", Struct. Eng. Mech., 45(2), 159-168. https://doi.org/10.12989/sem.2013.45.2.159
- Pan, C.D., Yu, L., Chen, Z.P., Luo, W.F. and Liu, H.L. (2016), "A hybrid self-adaptive Firefly-Nelder-Mead algorithm for structural damage detection", Smart Struct. Syst., 17(6), 957-980. https://doi.org/10.12989/sss.2016.17.6.957
- Pandey, A.K. and Biswas, M. (1994), "Damage detection in structures using changes in flexibility", J. Sound. Vib., 169(1), 3-17. https://doi.org/10.1006/jsvi.1994.1002
- Pandey, A.K., Biswas, M. and Samman, M.M. (1991), "Damage detection from changes in curvature mode shapes", J. Sound. Vib., 145(2), 321-332. https://doi.org/10.1016/0022-460X(91)90595-B
- Peeters, B. and Roeck, G.D. (2001), "Stochastic system identification for operational modal analysis: a review", J. Dyn. Syst.-T. Asme, 123(4), 659-667. https://doi.org/10.1115/1.1410370
- Seyedpoor, S.M. (2012), "A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization", Int. J. Nonlin. Mech., 47(1), 1-8.
- Shi, Z.Y., Law, S.S. and Zhang, L.M. (2000), "Structural damage detection from modal strain energy change", J. Eng. Mech., 126(12), 1216-1223. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1216)
- Simoen, E., De Roeck, G. and Lombaert, G. (2015), "Dealing with uncertainty in model updating for damage assessment: A review", Mech. Syst. Signal Pr., 56-57, 123-149. https://doi.org/10.1016/j.ymssp.2014.11.001
- Stone, J.V. (2001), "Blind source separation using temporal predictability", Neural Comput., 13(7), 1559-1574. https://doi.org/10.1162/089976601750265009
- Teughels, A. and De Roeck, G. (2005), "Damage detection and parameter identification by finite element model updating", Arch. Comput. Meth. E., 12(2), 123-164. https://doi.org/10.1007/BF03044517
- Xu, H.J., Ding, Z.H., Lu, Z.R. and Liu, J.K. (2015), "Structural damage detection based on Chaotic Artificial Bee Colony algorithm", Struct. Eng. Mech., 55(6), 1223-1239. https://doi.org/10.12989/sem.2015.55.6.1223
- Yan, Y.J., Cheng, L., Wu, Z.Y. and Yam, L.H. (2007), "Development in vibration-based structural damage detection technique", Mech. Syst. Signal Pr., 21(5), 2198-2211. https://doi.org/10.1016/j.ymssp.2006.10.002
- Yang, Y., Li, S., Nagarajaiah, S., Li, H. and Zhou, P. (2015), "Real-time output-only Iidentification of time-varying cable tension from accelerations via complexity pursuit", J. Struct. Eng., 142(1).
- Yang, Y. and Nagarajaiah, S. (2013), "Blind modal identification of output-only structures in time-domain based on complexity pursuit", Earthq. Eng. Struct. D., 42(13), 1885-1905. https://doi.org/10.1002/eqe.2302
- Yu, L. and Li, C. (2014), "A global artificial fish swarm algorithm for structural damage detection", Adv. Struct. Eng., 17(3), 331-346. https://doi.org/10.1260/1369-4332.17.3.331
- Yu, L. and Lin, J.C. (2017), "Cloud computing-based time series analysis for structural damage detection", J. Eng. Mech., 143(1), C4015002. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000982
- Yu, L. and Xu, P. (2011), "Structural health monitoring based on continuous ACO method", Microelectron. Reliab., 51(2), 270-278. https://doi.org/10.1016/j.microrel.2010.09.011
- Yu, L. and Zhu, J.H. (2015), "Nonlinear damage detection using higher statistical moments of structural responses", Struct. Eng. Mech., 54(2), 221-237. https://doi.org/10.12989/sem.2015.54.2.221
- Yuen, K.V., Au, S.K. and Beck, J.L. (2004), "Two-stage structural health monitoring approach for phase I Benchmark studies", J. Eng. Mech., 130(1), 16-33. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(16)
- Yuen, K.V. and Katafygiotis, L.S. (2001), "Bayesian time-domain approach for modal updating using ambient data", Probabilist Eng. Mech., 16(3), 219-231. https://doi.org/10.1016/S0266-8920(01)00004-2
- Yuen, K.V. and Katafygiotis, L.S. (2003), "Bayesian fast fourier transform approach for mdal updating using ambient data", Adv. Struct. Eng., 6(2), 81-95. https://doi.org/10.1260/136943303769013183
- Yuen, K.V. and Kuok, S.C. (2001), "Bayesian methods for updating dynamic models", Appl. Mech. Rev., 64(1), Article number 010802.
- Zhang, F.L. and Au, S.K. (2016), "Fundamental two-stage formulation for Bayesian system identification, Part II: Application to ambient vibration data", Mech. Syst. Signal Pr., 66-67, 43-61. https://doi.org/10.1016/j.ymssp.2015.04.024
- Zhang, F.L., Ni, Y.C., Au, S.K. and Lam, H.F. (2015), "Fast bayesian approach for modal identification using free vibration data, Part I - Most probable value", Mech. Syst. Signal Pr., 70-71, 209-220.
- Zhang, F.L., Xiong, H.B., Shi, W.X. and Ou, X. (2016), "Structural health monitoring of Shanghai Tower during different stages using a Bayesian approach", Struct. Control Hlth., 23, 1366-1384. https://doi.org/10.1002/stc.1840
피인용 문헌
- Damage Identification of a Steel Frame Based on Integration of Time Series and Neural Network under Varying Temperatures vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/4284381
- A hybrid ant lion optimizer with improved Nelder-Mead algorithm for structural damage detection by improving weighted trace lasso regularization vol.23, pp.3, 2017, https://doi.org/10.1177/1369433219872434
- Directed particle swarm optimization with Gaussian-process-based function forecasting vol.295, pp.1, 2017, https://doi.org/10.1016/j.ejor.2021.02.053