DOI QR코드

DOI QR Code

A structural health monitoring system based on multifractal detrended cross-correlation analysis

  • Lin, Tzu-Kang (Department of Civil Engineering, National Chiao Tung University) ;
  • Chien, Yi-Hsiu (Department of Civil Engineering, National Chiao Tung University)
  • 투고 : 2016.10.20
  • 심사 : 2017.07.13
  • 발행 : 2017.09.25

초록

In recent years, multifractal-based analysis methods have been widely applied in engineering. Among these methods, multifractal detrended cross-correlation analysis (MFDXA), a branch of fractal analysis, has been successfully applied in the fields of finance and biomedicine. For its great potential in reflecting the subtle characteristic among signals, a structural health monitoring (SHM) system based on MFDXA is proposed. In this system, damage assessment is conducted by exploiting the concept of multifractal theory to quantify the complexity of the vibration signal measured from a structure. According to the proposed algorithm, the damage condition is first distinguished by multifractal detrended fluctuation analysis. Subsequently, the relationship between the q-order, q-order detrended covariance, and length of segment is further explored. The dissimilarity between damaged and undamaged cases is visualized on contour diagrams, and the damage location can thus be detected using signals measured from different floors. Moreover, a damage index is proposed to efficiently enhance the SHM process. A seven-story benchmark structure, located at the National Center for Research on Earthquake Engineering (NCREE), was employed for an experimental verification to demonstrate the performance of the proposed SHM algorithm. According to the results, the damage condition and orientation could be correctly identified using the MFDXA algorithm and the proposed damage index. Since only the ambient vibration signal is required along with a set of initial reference measurements, the proposed SHM system can provide a lower cost, efficient, and reliable monitoring process.

키워드

참고문헌

  1. Aktan, A. and Catbas, F. (2003), "Development of a model health monitoring guide for major bridges", Fed. High. Adm. Res. Dev., no. DTFH61-01-P-00347. July, 1-290.
  2. Dutta, S., Ghosh, D. and Chatterjee, S. (2013). "Multifractal detrended fluctuation analysis of human gait diseases", Front. Phys.,4,1-7.
  3. Dutta, S., Ghosh, D. and Samanta, S. (2016), "Non linear approach to study the dynamics of neurodegenerative diseases by Multifractal Detrended Cross-correlation Analysis- A quantitative assessment on gait disease", Physica A, 488, 181-195.
  4. Fajri, H. and Lin, T.K. (2017), "Damage detection of sStructures with detrended fluctuation and detrended cross-correlation analyses", Smart Mater. Struct., 26(3), 1-19.
  5. Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods : A review and comparative study", 10(1), 83-111. https://doi.org/10.1177/1475921710365419
  6. Farrar, C.R. and James, G.H. (1997), "System identification from ambient vibration measurements on a bridge", J. Sound Vib., 205(1), 1-18. https://doi.org/10.1006/jsvi.1997.0977
  7. Ghosh, D., Dutta, S. and Chakraborty, S. (2014), "Multifractal detrended cross-correlation analysis for epileptic patient inseizure and seizure free status", Chaos Solit. Fracat., 67, 1-10. https://doi.org/10.1016/j.chaos.2014.06.010
  8. Haris, K., Chakraborty, B., Menezes, A., Sreepada, R.A. and Fernandes, W.A. (2014), "Multifractal detrended fluctuation analysis to characterize phase coupling in seahorses (Hippocampus kuda) feeding clicks", Acoust. Soc. Am., 136, 1972-1981. https://doi.org/10.1121/1.4895713
  9. He, L.Y. and Chen, S.P. (2011), "Multifractal detrended cross-correlation analysis of agricultural future markets", Chaos Solit. Fracat., 44, 355-361. https://doi.org/10.1016/j.chaos.2010.11.005
  10. Ihlen, E.A.F. (2012). "Introduction to multifractal detrended fluctuation analysis in Matlab", Front. Phys., 3, 1-18.
  11. Ivanov, P.Ch., Nunes Amaral, L.A., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Struzik, Z.R. and Eugene Stanley, H. (1999), "Multifractality in human heartbeat dynamics", Macmillan Magazines, Ltd, 399, 461-465.
  12. Jang, S.A., Sim, S. and Spencer Jr, B.F. (2007), Structural Damage Detection Using Static Strain Data.
  13. Kantelhardt, J.W. (2008), "Fractal and multifractal time series", Encyclopedia of Complexity and Systems Science, Springer New York.
  14. Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A. and Stanley, H.E. (2002), "Multifractal detrended fluctuation analysis of nonstationary time series", Physica A, 316, 87-144. https://doi.org/10.1016/S0378-4371(02)01383-3
  15. Li, J., Hao, H., Xia, Y. and Zhu, H.P. (2015), "Damage assessment of shear connectors with vibration measurements and power spectral density transmissibility", Struct. Eng. Mech., 54(2), 257-289. https://doi.org/10.12989/sem.2015.54.2.257
  16. Mandelbrot, B.B. (1983), "The fractal geometry of nature", Am. J. Phys., 51(3), 286-287. https://doi.org/10.1119/1.13295
  17. Nie, Q., Xu, J.H. and Man, W. (2016), "Long-range cross-correlation between urban impervious surfaces and land surface tempertures", Front. Earth. Sci., 10(1), 117-125. https://doi.org/10.1007/s11707-015-0512-9
  18. Pandey, A.K., Biswas, M. and Samman, M.M. (1991), "Damage detection from changes in curvature mode shapes", J. Sound Vib., 145(2), 321-332. https://doi.org/10.1016/0022-460X(91)90595-B
  19. Pehlivan, H. and Bayata, H.F. (2016), "Usability of inclinometers as a complementary measurement tool in structural monitoring", Struct. Eng. Mech., 58(6), 1077-1085. https://doi.org/10.12989/sem.2016.58.6.1077
  20. Peng, C.K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Mantegna, R.N., Simons, M. and Stanley, H.E. (1995), "Statistical properties of DNA sequences", Physica A, 221, 180-192. https://doi.org/10.1016/0378-4371(95)00247-5
  21. Peng, C.K., Havlin, S., Stanley, H.E. and Goldberger, A.L. (1995), "Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series", Am. Inst. Phys., 5(1), 82-87.
  22. Sadegh Movahed, M. and Hermanis, E. (2008), "Fractal analysis of river flow fluctuations", Physica A, 387, 915-932. https://doi.org/10.1016/j.physa.2007.10.007
  23. Shadkhoo, S. and Jafari, G.R. (2009), "Multifractal detrended cross-correlation analysis of temporal and spatial seismic data", Eur. Phys. J. B, 72, 679-683. https://doi.org/10.1140/epjb/e2009-00402-2
  24. Su, H.Z., Wen, Z.P., Wang, F. and Hu, J. (2016), "Dam structural behavior identification and prediction by using variable dimension fractal model and iterated function system", Appl. Soft Comput., 48, 612-620. https://doi.org/10.1016/j.asoc.2016.07.044
  25. Wang, F., Liao, G.P. and Zhou, X.Y. (2013), "Multifractal detrended cross-correlation analysis for power markets", Nonlin. Dyn., 72(1), 353-363. https://doi.org/10.1007/s11071-012-0718-2
  26. Yan, A.M., Kerschen, G., Boe, D. and Golinval, J.C. (2005), "Structural damage diagnosis under varying environmental conditions-Part I: A linear analysis", Mech. Syst. Signal Pr., 19(4), 847-864. https://doi.org/10.1016/j.ymssp.2004.12.002
  27. Yun, G.J. (2012), "Detection and quantification of structural damage under ambient vibration environment", Struct. Eng. Mech., 42(3), 425-448. https://doi.org/10.12989/sem.2012.42.3.425
  28. Zhou, W.Z. (2008), "Multifractal detrended cross-correlation analysis for two nonstationary signals", Phys. Rev., E77, 066211.