Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Au, S.K. and Zhang, F.L. (2016), "Fundamental two-stage formulation for Bayesian system identification, part I: general theory", Mech. Syst. Signal. Pr., 66, 31-42.
- Bazan, F.S.V. (2004), "Eigensystem realization algorithm (ERA): reformulation and system pole perturbation analysis", J. Sound Vib., 274(1), 433-444. https://doi.org/10.1016/j.jsv.2003.09.037
- Cara, F.J., Carpio, J., Juan, J. and Alarcon, E. (2012), "An approach to operational modal analysis using the expectation maximization algorithm", Mech. Syst. Signal. Pr., 31, 109-129. https://doi.org/10.1016/j.ymssp.2012.04.004
- Chen, H.P. and Maung, T.S. (2014), "Regularised finite element model updating using measured incomplete modal data", J. Sound Vib., 333(21), 5566-5582. https://doi.org/10.1016/j.jsv.2014.05.051
- Ibraham, S.R. (2001), "Efficient random decrement computation for identification of ambient responses", Proceedings of the 19th IMAC, Orlando, FL.
- James, G.H., Carne, T.G. and Lauffer, J.P. (1995), "The natural excitation technique (NExT) for modal parameter extraction from operating structures", Modal. Anal., 10(4), 260-277.
- Jeffrey, B.B. (1998), Linear optimal control: H2 and H-infinity methods, Addison-Wesley Longman Publishing Co., Inc.
- Juang, J.N. and Pappa, R.S. (1985), "An eigensystem realization algorithm for modal parameter identification and model reduction", J. Guid. Control. Dyn., 8(5), 620-627. https://doi.org/10.2514/3.20031
- Lei, Y., Sohn, H. and Yi, T.H. (2014), "Advances in monitoring-based structural identification, damage detection and condition assessment", Struct. Stab. Dyn., 14(5).
- Li, H.N., Qu, C.X., Huo, L. and Nagarajaiah, S. (2016), "Equivalent bilinear elastic single degree of freedom system of multi-degree of freedom structure with negative stiffness", J. Sound Vib., 365, 1-14. https://doi.org/10.1016/j.jsv.2015.11.005
- Magalhaes, F., Cunha, A. and Caetano, E. (2009), "Online automatic identification of the modal parameters of a long span arch bridge", Mech. Syst. Signal. Pr., 23(2), 316-329. https://doi.org/10.1016/j.ymssp.2008.05.003
- Marchesiello, S., Fasana, A. and Garibaldi, L. (2016), "Modal contributions and effects of spurious poles in nonlinear subspace identification", Mech. Syst. Signal. Pr., 74, 111-132. https://doi.org/10.1016/j.ymssp.2015.05.008
- Peeters, B. and Roeck, G.D. (2001), "Stochastic system identification for operational modal analysis: a review", J. Dyn. Syst., 123(4), 659-667. https://doi.org/10.1115/1.1410370
- Qu, C.X., Li, H.N., Huo, L. and Yi, T.H. (2017), "Optimum value of negative stiffness and additional damping in civil structures", J. Struct. Eng., 04017068.
- Van Overschee, P. and De Moor, B.L. (2012), Subspace Identification for Linear Systems: Theory-Implementation-Applications, Springer Science & Business Media.
- Verboven, P., Parloo, E., Guillaume, P. and Overmeire, M.V. (2002), "Autonomous structural health monitoring-part I: modal parameter estimation and tracking", Mech. Syst. Signal. Pr., 16(4), 637-657. https://doi.org/10.1006/mssp.2002.1492
- Yi, T.H., Li, H.N. and Gu, M. (2011), "A new method for optimal selection of sensor location on a high-rise building using simplified finite element model", Struct. Eng. Mech., 37(6), 671-684. https://doi.org/10.12989/sem.2011.37.6.671
- Yi, T.H., Li, H.N. and Zhang, X.D. (2012), "Sensor placement on Canton Tower for health monitoring using asynchronous-climb monkey algorithm", Smart Mater. Struct., 21(12), 125023. https://doi.org/10.1088/0964-1726/21/12/125023
- Zhang, F.L. and Au, S.K. (2016), "Fundamental two-stage formulation for Bayesian system identification, part II: application to ambient vibration data", Mech. Syst. Signal. Pr., 66, 43-61.
Cited by
- Modal identification for superstructure using virtual impulse response vol.22, pp.16, 2019, https://doi.org/10.1177/1369433219862951
- Seismic Performance and Strengthening of Purlin Roof Structures Using a Novel Damping-Limit Device vol.8, pp.None, 2021, https://doi.org/10.3389/fmats.2021.722018
- Complex frequency identification using real modal shapes for a structure with proportional damping vol.36, pp.10, 2021, https://doi.org/10.1111/mice.12676