DOI QR코드

DOI QR Code

Alternative approach for reproducing the in-plane behaviour of rubble stone walls

  • Tarque, Nicola (Division of Civil Engineering, Pontificia Universidad Catolica del Peru) ;
  • Camata, Guido (Department of Engineering and Geology, University G. D'Annunzio) ;
  • Benedetti, Andrea (Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna) ;
  • Spacone, Enrico (Department of Engineering and Geology, University G. D'Annunzio)
  • Received : 2016.10.06
  • Accepted : 2017.07.07
  • Published : 2017.07.25

Abstract

Stone masonry is one of the oldest construction types due to the natural and free availability of stones and the relatively easy construction. Since stone masonry is brittle, it is also very vulnerable and in the case of earthquakes damage, collapses and causalities are very likely to occur, as it has been seen during the last Italian earthquake in Amatrice in 2016. In the recent years, some researchers have performed experimental tests to improve the knowledge of the behaviour of stone masonry. Concurrently, there is the need to reproduce the seismic behaviour of these structures by numerical approaches, also in consideration of the high cost of experimental tests. In this work, an alternative simplified procedure to numerically reproduce the diagonal compression and shear compression tests on a rubble stone masonry is proposed within the finite element method. The proposed procedure represents the stone units as rigid bodies and the mortar as a plastic material with compression and tension inelastic behaviour calibrated based on parametric studies. The validation of the proposed model was verified by comparison with experimental data. The advantage of this simplified methodology is the use of a limited number of degrees of freedom which allows the reduction of the computational time, which leaves the possibility to carry out parametric studies that consider different wall configurations.

Keywords

References

  1. Abaqus 6.9 SIMULIA. (2009), Abaqus/CAE Extended Funcionality EF2, Manual, Dassault Systemss Corporation, Providence, RI, USA.
  2. Betti, M., Bartoli, G., Corazzi, R. and Kovacevic, V. (2012), "Strumenti Open Source per l'ingegneria strutturale. Modellazione meccanica non lineare di edifici in muratura. Bollettino degli Ingegneri", Collegio Ingegneri della Toscana, LX(12), 3-15. (in Italian)
  3. Binda, L., Pina-Henriques, J., Anzani, A., Fontana, A. and Lourenco, P. (2006), "A contribution for the understanding of load-transfer mechanisms in multi-leaf masonry walls: Testing and modelling", Eng. Struct., 28(8), 1132-1148. https://doi.org/10.1016/j.engstruct.2005.12.004
  4. Cattari, S. and Lagomarsino, S. (2013), "Seismic assessment of mixed masonry-reinforced concrete buildings by non-linear static analyses", Earthq. Struct., 4(3), 241-264. https://doi.org/10.12989/eas.2013.4.3.241
  5. Corradi, M., Borri, A. and Vignoli, A. (2003), "Experimental study on the determination of strength of masonry walls", Constr. Build. Mater., 17(5), 325-333. https://doi.org/10.1016/S0950-0618(03)00007-2
  6. Dogangun, A. and Sezen, H. (2012), "Seismic vulnerability and preservation of historical masonry monumental structures", Earthq. Struct., 3(1), 83-95. https://doi.org/10.12989/eas.2012.3.1.083
  7. Dolce, M., Ponzo, F.C., Goretti, A., Moroni, C., Giordano, F., de Canio, G. and Marnetto, R. (2008), "3D dynamic tests on 2/3 scale masonry buildings retrofitted with different systems", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China.
  8. Frumento, S. (2007), "Identificazione dei parametri di risposta a taglio di pannelli murari attraverso la prova di compressione diagonale", Ph.D. thesis, DICAT Universita degli Studi di Genova, Genova, Italy. (in Italian)
  9. Gardin, B. (2007), "Diagnosi delle murature storiche mediante procedure debolmente distruttive: problematiche nell'uso dei martinetti piatti", Master thesis, University of Padua, Padua, Italy. (in Italian)
  10. Gautam, D., Rodrigues, H., Bhetwal, K., Neupane, P. and Sanada Y. (2016), "Common structural and constructions deficiencies of Nepalese buildings", Innov. Infrastruct. Solut. J., 1(1), 1-18. https://doi.org/10.1007/s41062-016-0001-3
  11. Graziotti, F., Magenes, G. and Penna, A. (2016), Experimental campaign on double-leaf stone masonry specimens at the University of Pavia and EUCENTRE Pavia. Experimental researches on the seismic behaviour of masonry spandrels: an international perspective, Chapter: 2, Publisher: EUCENTRE Press, Editors: Nicola Augenti, Francesco Graziotti, Guido Magenes, Fulvio Parisi.
  12. Karantoni, F., Tsionis, G., Lyrantzaki, F. and Fardis, M.N. (2014), "Seismic fragility of regular masonry buildings for in-plane and out-of-plane failure", Earthq. Struct., 6(6), 689-713. https://doi.org/10.12989/eas.2014.6.6.689
  13. Lagomarsino, S., Penna, A., Galasco, A. and Cattari, S. (2013), "TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings", Eng. Struct., 56, 1787-1799 https://doi.org/10.1016/j.engstruct.2013.08.002
  14. Magenes G., Penna A., Senaldi I., Rota M. and Galasco A. (2014), "Shaking table test of a strengthened full-scale stone masonry building with flexible diaphragms", Int. J. Architec. Herit., Taylor and Francis, 8(3), 349-375. https://doi.org/10.1080/15583058.2013.826299
  15. Magenes, G., Penna, A., Galasco, A. and Rota, M. (2010), "Experimental characterization of stone masonry mechanical properties", Proceedings of the 8th International Masonry Conference, Dresden, Germany.
  16. Milosevic, J., Lopes, M., Sousa, A. and Bento, R. (2013a), "Testing and modelling the diagonal tension strength of rubble stone masonry panels", Eng. Struct., 52, 581-591. https://doi.org/10.1016/j.engstruct.2013.03.019
  17. Milosevic, J., Gago, A., Lopes, M. and Bento, R. (2013b), "Experimental assessment of shear strength parameters on rubble stone masonry specimens", Constr. Build. Mater., 47, 1372-1380. https://doi.org/10.1016/j.conbuildmat.2013.06.036
  18. Oliveira, D. and Lourenco, P.B. (2006), "Experimental behaviour of three-leaf stone masonry walls", Proceeding of The construction aspects of built heritage protection, Dubrovnik, Croatia, 356-362.
  19. Oliveira, D., Silva, R.A., Garbin, E. and Lourenco, P.B. (2012), "Strengthening of three-leaf stone masonry walls: an experimental research", Mater. Struct., 45(8), 1259-1276. https://doi.org/10.1617/s11527-012-9832-3
  20. Pagnini, L.C., Romeu, V., Lagomarsino, S. and Varum, H. (2011), "A mechanical model for the seismic Vulnerability assessment of old masonry buildings", Earthq. Struct., 2(1), 25-42. https://doi.org/10.12989/eas.2011.2.1.025
  21. Pela, L., Cervera, M. and Roca, P. (2013), "An orthotropic damage model for the analysis of masonry structures", Constr. Build. Mater., 41, 957-967. https://doi.org/10.1016/j.conbuildmat.2012.07.014
  22. Penna, A., Senaldi, I., Galasco, A. and Magenes, G. (2016), "Numerical simulation of shaking table tests on full-scale stone masonry buildings", Int. J. Architec. Herit, 10(2-3), 146-163. https://doi.org/10.1080/15583058.2015.1113338
  23. Roca, P., Molins, C. and Mari, A. (2005), "Strength capacity of masonry wall structures by the equivalent frame method", J. Struct. Eng., 131(10), 1601-1610. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:10(1601)
  24. Seker, B.S., Cakir, F., Dogangun, A. and Uysal, H. (2014), "Investigation of the structural performance of a masonry domed mosque by experimental tests and numerical analysis", Earthq. Struct., 6(4), 335-350. https://doi.org/10.12989/eas.2014.6.4.335
  25. Senthivel, R. and Lourenco, P.B. (2009), "Finite element modelling of deformation characteristics of historical stone masonry shear walls", Eng. Struct., 31(9), 1930-1943. https://doi.org/10.1016/j.engstruct.2009.02.046
  26. Spacone, E. and Camata, G. (2016), Esecuzione di prove non destruttive in situ e di laboratorio distruttive su provini e modelli, Convenzione di ricerca sulle malte idreuliche nell'ambito del POR FESR Abruzzo 2007-2013. Universita degli Studi "Gabriele d'Annunzio", Chieti-Pescara, Italy. (in Italian)
  27. Tarque, N., Camata, G., Spacone, E., Varum, H. and Blondet, M. (2014), "Nonlinear dynamic analysis of a full-scale unreinforced adobe model", Earthq. Spectra, 30(4), 1643-1661. https://doi.org/10.1193/022512EQS053M
  28. Ural, A. (2013), "19th May 2011 Simav (Kutahya) earthquake and response of masonry Halil Aga Mosque", Earthq. Struct., 4(6), 671-683. https://doi.org/10.12989/eas.2013.4.6.671
  29. Valluzi, M.R., da Porto, F. and Modena, C. (2001), Behaviour of multi-leaf stone masonry walls strengthened by different intervention techniques, Historical Constructions, P.B. Lourenco and P. Roca (Eds.), pp. 1026-1032, Guimaraes, Portugal.
  30. Vasconcelos, G. (2005), "Experimental investigations on the mechanics of stone masonry: Characterization of granites and behaviour of ancient masonry shear walls", Ph.D. thesis, University of Minho, Guimaraes, Portugal.
  31. Vasconcelos, G. and Lourenco, P. (2009), "Experimental characterization of stone masonry in shear and compression", Constr. Build. Mater., 23(11), 3337-3345. https://doi.org/10.1016/j.conbuildmat.2009.06.045
  32. Vintzileou, E., Mouzakis, C., Adami, C. and Karapita, L. (2015), "Seismic behavior of three-leaf stone masonry buildings before and after interventions: Shaking table tests on a two-storey masonry model", Bull. Earthq. Eng., 13(10), 3107-3133. https://doi.org/10.1007/s10518-015-9746-x

Cited by

  1. A Multilevel Approach for the Cultural Heritage Vulnerability and Strengthening: Application to the Melfi Castle vol.10, pp.9, 2017, https://doi.org/10.3390/buildings10090158
  2. Ultimate shear strength prediction model for unreinforced masonry retrofitted externally with textile reinforced mortar vol.19, pp.6, 2017, https://doi.org/10.12989/eas.2020.19.6.411