참고문헌
- Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403
- Bayat, M. and Pakar, I. (2015a), "Mathematical solution for nonlinear vibration equations using variational approach", Smart Struct. Syst., 15(5), 1311-1327. https://doi.org/10.12989/sss.2015.15.5.1311
- Bayat, M., Bayat, M. and Pakar, I. (2015b), "Analytical study of nonlinear vibration of oscillators with damping", Earthq. Struct., 9(1), 221-232. https://doi.org/10.12989/eas.2015.9.1.221
- Bayat, M., Pakar, I. and Domaiirry, G. (2012b), "Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: a review", Latin Am. J. Solid. Struct., 9(2), 145-234.
- Cai, X.C. and Liu, J.F. (2011), "Application of the modified frequency formulation to a nonlinear oscillator", Comput. Math. Appl., 61(8), 2237-2240. https://doi.org/10.1016/j.camwa.2010.09.025
- Civalek, O. (2006), "Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation", J. Sound Vib., 294(4), 966-980. https://doi.org/10.1016/j.jsv.2005.12.041
- Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. Part B: Eng., 50, 171-179. https://doi.org/10.1016/j.compositesb.2013.01.027
- Cunedioglu, Y. and Beylergil, B. (2014), "Free vibration analysis of laminated composite beam under room and high temperatures", Struct. Eng. Mech., 51(1), 111-130. https://doi.org/10.12989/sem.2014.51.1.111
- He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillators", Mech. Res. Commun., 29(2), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
- He, J.H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Lett. A, 374(23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
- Huseyin, K. and Lin, R. (1991), "An Intrinsic multiple- time-scale harmonic balance method for nonlinear vibration and bifurcation problems", Int. J. Nonlinear Mech., 26(5), 727-740. https://doi.org/10.1016/0020-7462(91)90023-M
- Jamshidi, N. and Ganji, D.D. (2010), "Application of energy balance method and variational iteration method to an oscillation of a mass attached to a stretched elastic wire", Curr. Appl. Phys., 10(2), 484-486. https://doi.org/10.1016/j.cap.2009.07.004
- Lau, S.L., Cheung, Y.K. and Wu, S.Y. (1983), "Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear systems", J. Appl. Mech., ASME, 50(4), 871-876. https://doi.org/10.1115/1.3167160
- Mehdipour, I., Ganji, D.D. and Mozaffari, M. (2010), "Application of the energy balance method to nonlinear vibrating equations", Curr. Appl. Phys., 10(1), 104-112. https://doi.org/10.1016/j.cap.2009.05.016
- Pakar, I. and Bayat, M. (2015), "Nonlinear vibration of stringer shell: An analytical approach", Proc. Inst. Mech. Engineers, Part E: J. Process Mech. Eng., 229(1), 44-51. https://doi.org/10.1177/0954408913509090
- Sedighi, H.M. and Bozorgmehri, A. (2016), "Dynamic instability analysis of doubly clamped cylindrical nanowires in the presence of Casimir attraction and surface effects using modified couple stress theory", Acta Mechanica, 227(6), 1575-1591. https://doi.org/10.1007/s00707-016-1562-0
- Sedighi, H.M., Koochi, A., Daneshmand, F. and Abadyan, M. (2015), "Non-linear dynamic instability of a double-sided nano-bridge considering centrifugal force and rarefied gas flow", Int. J. Non-Linear Mech., 77, 96-106. https://doi.org/10.1016/j.ijnonlinmec.2015.08.002
- Shaban, M., Ganji, D.D. and Alipour, A.A. (2010), "Nonlinear fluctuation, frequency and stability analyses in free vibration of circular sector oscillation systems", Curr. Appl. Phys., 10(5), 1267-1285. https://doi.org/10.1016/j.cap.2010.03.005
- Shen, Y.Y. and Mo, L.F. (2009), "The max-min approach to a relativistic equation", Comput. Math. Appl., 58(11), 2131-2133. https://doi.org/10.1016/j.camwa.2009.03.056
- Wu, G. (2011), "Adomian decomposition method for non-smooth initial value problems", Math. Comput. Model., 54(9-10), 2104-2108. https://doi.org/10.1016/j.mcm.2011.05.018
- Xu, L. (2010), "Application of Hamiltonian approach to an oscillation of a mass attached to a stretched elastic wire", Comput. Math. Appl., 15(5), 901-906.
- Zeng, D.Q. and Lee, Y.Y. (2009), "Analysis of strongly nonlinear oscillator using the max-min approach", Int. J. Nonlinear Sci. Numer. Simulat., 10(10), 1361-1368.