DOI QR코드

DOI QR Code

CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells

  • Kim, Eun Ji (Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Kang, Ki Ho (Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Ju, Ji Hyeon (Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea)
  • Received : 2016.06.24
  • Accepted : 2016.12.10
  • Published : 2017.01.01

Abstract

Recent advances in genome editing with programmable nucleases have opened up new avenues for multiple applications, from basic research to clinical therapy. The ease of use of the technology-and particularly clustered regularly interspaced short palindromic repeats (CRISPR)-will allow us to improve our understanding of genomic variation in disease processes via cellular and animal models. Here, we highlight the progress made in correcting gene mutations in monogenic hereditary disorders and discuss various CRISPR-associated applications, such as cancer research, synthetic biology, and gene therapy using induced pluripotent stem cells. The challenges, ethical issues, and future prospects of CRISPR-based systems for human research are also discussed.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015;372:793-795. https://doi.org/10.1056/NEJMp1500523
  2. Lander ES. Cutting the Gordian helix: regulating genomic testing in the era of precision medicine. N Engl J Med 2015;372:1185-1186. https://doi.org/10.1056/NEJMp1501964
  3. Jameson JL, Longo DL. Precision medicine: personalized, problematic, and promising. N Engl J Med 2015;372:2229-2234. https://doi.org/10.1056/NEJMsb1503104
  4. Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007;315:1709-1712. https://doi.org/10.1126/science.1138140
  5. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987;169:5429-5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987
  6. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 2005;151(Pt 8):2551-2561. https://doi.org/10.1099/mic.0.28048-0
  7. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005;60:174-182. https://doi.org/10.1007/s00239-004-0046-3
  8. Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 2005;151(Pt 3):653-663. https://doi.org/10.1099/mic.0.27437-0
  9. Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008;322:1843-1845. https://doi.org/10.1126/science.1165771
  10. Hale CR, Zhao P, Olson S, et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 2009;139:945-956. https://doi.org/10.1016/j.cell.2009.07.040
  11. Brouns SJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008;321:960-964. https://doi.org/10.1126/science.1159689
  12. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816-821. https://doi.org/10.1126/science.1225829
  13. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819-823. https://doi.org/10.1126/science.1231143
  14. Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013;339:823-826. https://doi.org/10.1126/science.1232033
  15. Mojica FJ, Diez-Villasenor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 2000;36:244-246. https://doi.org/10.1046/j.1365-2958.2000.01838.x
  16. Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002;43:1565-1575. https://doi.org/10.1046/j.1365-2958.2002.02839.x
  17. Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 2002;30:482-496. https://doi.org/10.1093/nar/30.2.482
  18. Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 2005;1:e60. https://doi.org/10.1371/journal.pcbi.0010060
  19. Garneau JE, Dupuis ME, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010;468:67-71. https://doi.org/10.1038/nature09523
  20. Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011;471:602-607. https://doi.org/10.1038/nature09886
  21. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 2011;39:9275-9282. https://doi.org/10.1093/nar/gkr606
  22. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNAprogrammed genome editing in human cells. Elife 2013;2:e00471. https://doi.org/10.7554/eLife.00471
  23. Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 2013;31:227-229. https://doi.org/10.1038/nbt.2501
  24. Wang H, Yang H, Shivalila CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013;153:910-918. https://doi.org/10.1016/j.cell.2013.04.025
  25. Bassett AR, Tibbit C, Ponting CP, Liu JL. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 2013;4:220-228. https://doi.org/10.1016/j.celrep.2013.06.020
  26. Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 2013;10:741-743. https://doi.org/10.1038/nmeth.2532
  27. Li JF, Norville JE, Aach J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 2013;31:688-691. https://doi.org/10.1038/nbt.2654
  28. Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 2013;51:835-843. https://doi.org/10.1002/dvg.22720
  29. Jinek M, Jiang F, Taylor DW, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 2014;343:1247997. https://doi.org/10.1126/science.1247997
  30. Nishimasu H, Ran FA, Hsu PD, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014;156:935-949. https://doi.org/10.1016/j.cell.2014.02.001
  31. Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science 2014;343:80-84. https://doi.org/10.1126/science.1246981
  32. Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014;343:84-87. https://doi.org/10.1126/science.1247005
  33. Niu Y, Shen B, Cui Y, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 2014;156:836-843. https://doi.org/10.1016/j.cell.2014.01.027
  34. Wagner JC, Platt RJ, Goldfless SJ, Zhang F, Niles JC. Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum. Nat Methods 2014;11:915-918. https://doi.org/10.1038/nmeth.3063
  35. Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015;6:363-372. https://doi.org/10.1007/s13238-015-0153-5
  36. Cleto S, Jensen JV, Wendisch VF, Lu TK. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol 2016;5:375-385. https://doi.org/10.1021/acssynbio.5b00216
  37. Wright AV, Nunez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 2016;164:29-44. https://doi.org/10.1016/j.cell.2015.12.035
  38. Shmakov S, Abudayyeh OO, Makarova KS, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 2015;60:385-397. https://doi.org/10.1016/j.molcel.2015.10.008
  39. Doudna JA, Charpentier E. Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science 2014;346:1258096. https://doi.org/10.1126/science.1258096
  40. Makarova KS, Haft DH, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 2011;9:467-477. https://doi.org/10.1038/nrmicro2577
  41. Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 2015;13:722-736. https://doi.org/10.1038/nrmicro3569
  42. Lander ES. The heroes of CRISPR. Cell 2016;164:18-28. https://doi.org/10.1016/j.cell.2015.12.041
  43. Charpentier E, Richter H, van der Oost J, White MF. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev 2015;39:428-441. https://doi.org/10.1093/femsre/fuv023
  44. Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014;15:321-334. https://doi.org/10.1038/nrg3686
  45. Charpentier E, Doudna JA. Biotechnology: rewriting a genome. Nature 2013;495:50-51. https://doi.org/10.1038/495050a
  46. Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med 2015;21:121-131. https://doi.org/10.1038/nm.3793
  47. Silva G, Poirot L, Galetto R, et al. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 2011;11:11-27. https://doi.org/10.2174/156652311794520111
  48. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010;11:636-646. https://doi.org/10.1038/nrg2842
  49. Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010;186:757-761. https://doi.org/10.1534/genetics.110.120717
  50. Maeder ML, Thibodeau-Beganny S, Osiak A, et al. Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 2008;31:294-301. https://doi.org/10.1016/j.molcel.2008.06.016
  51. Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science 2009;326:1501. https://doi.org/10.1126/science.1178817
  52. Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013;14:49-55.
  53. Prakash V, Moore M, Yanez-Munoz RJ. Current progress in therapeutic gene editing for monogenic diseases. Mol Ther 2016;24:465-474. https://doi.org/10.1038/mt.2016.5
  54. Ousterout DG, Perez-Pinera P, Thakore PI, et al. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther 2013;21:1718-1726. https://doi.org/10.1038/mt.2013.111
  55. Benabdallah BF, Duval A, Rousseau J, et al. Targeted gene addition of microdystrophin in mice skeletal muscle via human myoblast transplantation. Mol Ther Nucleic Acids 2013;2:e68. https://doi.org/10.1038/mtna.2012.55
  56. Ousterout DG, Kabadi AM, Thakore PI, et al. Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Ther 2015;23:523-532. https://doi.org/10.1038/mt.2014.234
  57. Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 2015;6:6244. https://doi.org/10.1038/ncomms7244
  58. Voit RA, Hendel A, Pruett-Miller SM, Porteus MH. Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic Acids Res 2014;42:1365-1378. https://doi.org/10.1093/nar/gkt947
  59. Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A 2014;111:11461-11466. https://doi.org/10.1073/pnas.1405186111
  60. Lin SR, Yang HC, Kuo YT, et al. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids 2014;3:e186. https://doi.org/10.1038/mtna.2014.38
  61. Kennedy EM, Bassit LC, Mueller H, et al. Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology 2015;476:196-205. https://doi.org/10.1016/j.virol.2014.12.001
  62. Seeger C, Sohn JA. Targeting hepatitis B virus with CRISPR/Cas9. Mol Ther Nucleic Acids 2014;3:e216. https://doi.org/10.1038/mtna.2014.68
  63. Ramanan V, Shlomai A, Cox DB, et al. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep 2015;5:10833. https://doi.org/10.1038/srep10833
  64. Zhen S, Hua L, Liu YH, et al. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther 2015;22:404-412. https://doi.org/10.1038/gt.2015.2
  65. Dong C, Qu L, Wang H, Wei L, Dong Y, Xiong S. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res 2015;118:110-117. https://doi.org/10.1016/j.antiviral.2015.03.015
  66. Liu X, Hao R, Chen S, Guo D, Chen Y. Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome. J Gen Virol 2015;96:2252-2261. https://doi.org/10.1099/vir.0.000159
  67. Zhen S, Hua L, Takahashi Y, Narita S, Liu YH, Li Y. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun 2014;450:1422-1426. https://doi.org/10.1016/j.bbrc.2014.07.014
  68. Kennedy EM, Kornepati AV, Goldstein M, et al. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol 2014;88:11965-11972. https://doi.org/10.1128/JVI.01879-14
  69. Yu L, Wang X, Zhu D, et al. Disruption of human papillomavirus 16 E6 gene by clustered regularly interspaced short palindromic repeat/Cas system in human cervical cancer cells. Onco Targets Ther 2015;8:37-44.
  70. Hu Z, Yu L, Zhu D, et al. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. Biomed Res Int 2014;2014:612823.
  71. Lee CM, Flynn R, Hollywood JA, Scallan MF, Harrison PT. Correction of the deltaF508 mutation in the cystic fibrosis transmembrane conductance regulator gene by zinc-finger nuclease homology-directed repair. Biores Open Access 2012;1:99-108. https://doi.org/10.1089/biores.2012.0218
  72. Li XB, Chen J, Deng MJ, Wang F, Du ZW, Zhang JW. Zinc finger protein HZF1 promotes K562 cell proliferation by interacting with and inhibiting INCA1. Mol Med Rep 2011;4:1131-1137.
  73. Lombardo A, Genovese P, Beausejour CM, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007;25:1298-1306. https://doi.org/10.1038/nbt1353
  74. Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005;435:646-651. https://doi.org/10.1038/nature03556
  75. Matsubara Y, Chiba T, Kashimada K, et al. Transcription activator-like effector nuclease-mediated transduction of exogenous gene into IL2RG locus. Sci Rep 2014;4:5043.
  76. Genovese P, Schiroli G, Escobar G, et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 2014;510:235-240. https://doi.org/10.1038/nature13420
  77. Osborn MJ, Starker CG, McElroy AN, et al. TALEN-based gene correction for epidermolysis bullosa. Mol Ther 2013;21:1151-1159. https://doi.org/10.1038/mt.2013.56
  78. Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016;351:403-407. https://doi.org/10.1126/science.aad5143
  79. Tabebordbar M, Zhu K, Cheng JK, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 2016;351:407-411. https://doi.org/10.1126/science.aad5177
  80. Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 2016;351:400-403. https://doi.org/10.1126/science.aad5725
  81. Wu Y, Zhou H, Fan X, et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res 2015;25:67-79. https://doi.org/10.1038/cr.2014.160
  82. Li H, Haurigot V, Doyon Y, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 2011;475:217-221. https://doi.org/10.1038/nature10177
  83. Anguela XM, Sharma R, Doyon Y, et al. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood 2013;122:3283-3287. https://doi.org/10.1182/blood-2013-04-497354
  84. Sharma R, Anguela XM, Doyon Y, et al. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 2015;126:1777-1784. https://doi.org/10.1182/blood-2014-12-615492
  85. Yin H, Xue W, Chen S, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 2014;32:551-553. https://doi.org/10.1038/nbt.2884
  86. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 2014;345:1184-1188. https://doi.org/10.1126/science.1254445
  87. Xu L, Park KH, Zhao L, et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 2016;24:564-569. https://doi.org/10.1038/mt.2015.192
  88. Ding Q, Strong A, Patel KM, et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res 2014;115:488-492. https://doi.org/10.1161/CIRCRESAHA.115.304351
  89. Li HL, Fujimoto N, Sasakawa N, et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports 2015;4:143-154. https://doi.org/10.1016/j.stemcr.2014.10.013
  90. Park CY, Kim J, Kweon J, et al. Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc Natl Acad Sci U S A 2014;111:9253-9258. https://doi.org/10.1073/pnas.1323941111
  91. Park CY, Kim DH, Son JS, et al. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 2015;17:213-220. https://doi.org/10.1016/j.stem.2015.07.001
  92. Hoban MD, Cost GJ, Mendel MC, et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 2015;125:2597-2604. https://doi.org/10.1182/blood-2014-12-615948
  93. Sebastiano V, Maeder ML, Angstman JF, et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 2011;29:1717-1726. https://doi.org/10.1002/stem.718
  94. Sun N, Zhao H. Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnol Bioeng 2014;111:1048-1053. https://doi.org/10.1002/bit.25018
  95. Huang X, Wang Y, Yan W, et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells 2015;33:1470-1479. https://doi.org/10.1002/stem.1969
  96. Xie F, Ye L, Chang JC, et al. Seamless gene correction of beta-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res 2014;24:1526-1533. https://doi.org/10.1101/gr.173427.114
  97. Ma N, Shan Y, Liao B, et al. Factor-induced reprogramming and zinc finger nuclease-aided gene targeting cause different genome instability in beta-thalassemia induced pluripotent stem cells (iPSCs). J Biol Chem 2015;290:12079-12089. https://doi.org/10.1074/jbc.M114.624999
  98. Ye L, Wang J, Beyer AI, et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection. Proc Natl Acad Sci U S A 2014;111:9591-9596. https://doi.org/10.1073/pnas.1407473111
  99. Wilen CB, Wang J, Tilton JC, et al. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases. PLoS Pathog 2011;7:e1002020. https://doi.org/10.1371/journal.ppat.1002020
  100. Sebastiano V, Zhen HH, Haddad B, et al. Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci Transl Med 2014;6:264ra163. https://doi.org/10.1126/scitranslmed.3009540
  101. Crane AM, Kramer P, Bui JH, et al. Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Reports 2015;4:569-577. https://doi.org/10.1016/j.stemcr.2015.02.005
  102. Sargent RG, Suzuki S, Gruenert DC. Nuclease-mediated double-strand break (DSB) enhancement of small fragment homologous recombination (SFHR) gene modification in human-induced pluripotent stem cells (hiPSCs). Methods Mol Biol 2014;1114:279-290.
  103. Firth AL, Menon T, Parker GS, et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep 2015;12:1385-1390. https://doi.org/10.1016/j.celrep.2015.07.062
  104. Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013;13:653-658. https://doi.org/10.1016/j.stem.2013.11.002
  105. Suzuki S, Sargent RG, Illek B, et al. TALENs facilitate single-step seamless SDF correction of F508del CFTR in airway epithelial submucosal gland cell-derived CF-iPSCs. Mol Ther Nucleic Acids 2016;5:e273. https://doi.org/10.1038/mtna.2015.43
  106. Vierstra J, Reik A, Chang KH, et al. Functional footprinting of regulatory DNA. Nat Methods 2015;12:927-930. https://doi.org/10.1038/nmeth.3554
  107. Canver MC, Smith EC, Sher F, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 2015;527:192-197. https://doi.org/10.1038/nature15521
  108. Rahman SH, Kuehle J, Reimann C, et al. Rescue of DNAPK signaling and T-cell differentiation by targeted genome editing in a prkdc deficient iPSC disease model. PLoS Genet 2015;11:e1005239. https://doi.org/10.1371/journal.pgen.1005239
  109. Menon T, Firth AL, Scripture-Adams DD, et al. Lymphoid regeneration from gene-corrected SCID-X1 subject-derived iPSCs. Cell Stem Cell 2015;16:367-372. https://doi.org/10.1016/j.stem.2015.02.005
  110. Holt N, Wang J, Kim K, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 2010;28:839-847. https://doi.org/10.1038/nbt.1663
  111. Li L, Krymskaya L, Wang J, et al. Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther 2013;21:1259-1269. https://doi.org/10.1038/mt.2013.65
  112. Nathwani AC, Tuddenham EG, Rangarajan S, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011;365:2357-2365. https://doi.org/10.1056/NEJMoa1108046
  113. Nathwani AC, Reiss UM, Tuddenham EG, et al. Longterm safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 2014;371:1994-2004. https://doi.org/10.1056/NEJMoa1407309
  114. Hutter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 2009;360:692-698. https://doi.org/10.1056/NEJMoa0802905
  115. Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014;370:901-910. https://doi.org/10.1056/NEJMoa1300662
  116. Badia R, Pauls E, Riveira-Munoz E, Clotet B, Este JA, Ballana E. Zinc finger endonuclease targeting PSIP1 inhibits HIV-1 integration. Antimicrob Agents Chemother 2014;58:4318-4327. https://doi.org/10.1128/AAC.02690-14
  117. Fadel HJ, Morrison JH, Saenz DT, et al. TALEN knockout of the PSIP1 gene in human cells: analyses of HIV-1 replication and allosteric integrase inhibitor mechanism. J Virol 2014;88:9704-9717. https://doi.org/10.1128/JVI.01397-14
  118. White MK, Khalili K. CRISPR/Cas9 and cancer targets: future possibilities and present challenges. Oncotarget 2016;7:12305-12317.
  119. Brown MT, Cooper JA. Regulation, substrates and functions of src. Biochim Biophys Acta 1996;1287:121-149.
  120. Choi PS, Meyerson M. Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun 2014;5:3728. https://doi.org/10.1038/ncomms4728
  121. Chen C, Liu Y, Rappaport AR, et al. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 2014;25:652-665. https://doi.org/10.1016/j.ccr.2014.03.016
  122. Xue W, Chen S, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 2014;514:380-384. https://doi.org/10.1038/nature13589
  123. Chiou SH, Winters IP, Wang J, et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev 2015;29:1576-1585. https://doi.org/10.1101/gad.264861.115
  124. Tu Z, Yang W, Yan S, Guo X, Li XJ. CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Mol Neurodegener 2015;10:35. https://doi.org/10.1186/s13024-015-0031-x
  125. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014;157:1262-1278. https://doi.org/10.1016/j.cell.2014.05.010
  126. Jusiak B, Cleto S, Perez-Pinera P, Lu TK. Engineering synthetic gene circuits in living cells with CRISPR technology. Trends Biotechnol 2016;34:535-547. https://doi.org/10.1016/j.tibtech.2015.12.014
  127. Wang Y, Cheng X, Shan Q, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 2014;32:947-951. https://doi.org/10.1038/nbt.2969
  128. Zhou Y, Zhu S, Cai C, et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 2014;509:487-491. https://doi.org/10.1038/nature13166
  129. Diecke S, Jung SM, Lee J, Ju JH. Recent technological updates and clinical applications of induced pluripotent stem cells. Korean J Intern Med 2014;29:547-557. https://doi.org/10.3904/kjim.2014.29.5.547
  130. Musunuru K. Genome editing of human pluripotent stem cells to generate human cellular disease models. Dis Model Mech 2013;6:896-904. https://doi.org/10.1242/dmm.012054
  131. Grobarczyk B, Franco B, Hanon K, Malgrange B. Generation of isogenic human iPS cell line precisely corrected by genome editing using the CRISPR/Cas9 system. Stem Cell Rev 2015;11:774-787. https://doi.org/10.1007/s12015-015-9600-1
  132. Orqueda AJ, Gimenez CA, Pereyra-Bonnet F. iPSCs: a minireview from bench to bed, including organoids and the CRISPR system. Stem Cells Int 2016;2016:5934782.
  133. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 2015;33:538-542. https://doi.org/10.1038/nbt.3190
  134. Chu VT, Weber T, Wefers B, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 2015;33:543-548. https://doi.org/10.1038/nbt.3198
  135. Nakade S, Tsubota T, Sakane Y, et al. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 2014;5:5560. https://doi.org/10.1038/ncomms6560
  136. Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 2016;11:118-133. https://doi.org/10.1038/nprot.2015.140
  137. Ledford H. Bacteria yield new gene cutter. Nature 2015; 526:17. https://doi.org/10.1038/nature.2015.18432
  138. Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 2013;31:827-832. https://doi.org/10.1038/nbt.2647
  139. Mali P, Aach J, Stranges PB, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 2013;31:833-838. https://doi.org/10.1038/nbt.2675
  140. Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013;154:1380-1389. https://doi.org/10.1016/j.cell.2013.08.021
  141. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014;32:279-284. https://doi.org/10.1038/nbt.2808
  142. Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 2014;32:577-582. https://doi.org/10.1038/nbt.2909
  143. Tsai SQ, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 2014;32:569-576. https://doi.org/10.1038/nbt.2908
  144. Hastie E, Samulski RJ. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success: a personal perspective. Hum Gene Ther 2015;26:257-265. https://doi.org/10.1089/hum.2015.025
  145. Moore R, Spinhirne A, Lai MJ, et al. CRISPR-based self-cleaving mechanism for controllable gene delivery in human cells. Nucleic Acids Res 2015;43:1297-1303. https://doi.org/10.1093/nar/gku1326
  146. Kormann MS, Hasenpusch G, Aneja MK, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 2011;29:154-157. https://doi.org/10.1038/nbt.1733
  147. Zuris JA, Thompson DB, Shu Y, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 2015;33:73-80. https://doi.org/10.1038/nbt.3081

Cited by

  1. Induced pluripotent stem cell models of lysosomal storage disorders vol.10, pp.6, 2017, https://doi.org/10.1242/dmm.029009
  2. Risk associated with off-target plant genome editing and methods for its limitation vol.1, pp.2, 2017, https://doi.org/10.1042/etls20170037
  3. CRISPR genome editing and its medical applications vol.32, pp.2, 2017, https://doi.org/10.1080/13102818.2017.1406823
  4. Different Chondrogenic Potential among Human Induced Pluripotent Stem Cells from Diverse Origin Primary Cells vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/9432616
  5. Genome-editing applications of CRISPR–Cas9 to promote in vitro studies of Alzheimer’s disease vol.13, pp.None, 2017, https://doi.org/10.2147/cia.s155145
  6. Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells vol.19, pp.4, 2017, https://doi.org/10.3390/ijms19040936
  7. Retinitis pigmentosa: recent advances and future directions in diagnosis and management vol.30, pp.6, 2017, https://doi.org/10.1097/mop.0000000000000690
  8. CRISPR-Cas9 mediated CD133 knockout inhibits colon cancer invasion through reduced epithelial-mesenchymal transition vol.14, pp.8, 2019, https://doi.org/10.1371/journal.pone.0220860
  9. Aging: A cell source limiting factor in tissue engineering vol.11, pp.10, 2017, https://doi.org/10.4252/wjsc.v11.i10.787
  10. The potential role of exosomes derived from ovarian cancer cells for diagnostic and therapeutic approaches vol.234, pp.12, 2017, https://doi.org/10.1002/jcp.28905
  11. CRISPR/Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells vol.116, pp.52, 2017, https://doi.org/10.1073/pnas.1907081116
  12. Novel genetic therapeutic approaches for modulating the severity of β-thalassemia (Review) vol.13, pp.5, 2017, https://doi.org/10.3892/br.2020.1355
  13. La edición del ADN vol.33, pp.3, 2017, https://doi.org/10.17533/udea.iatreia.56
  14. CRISPR-mediated gene modification of hematopoietic stem cells with beta-thalassemia IVS-1-110 mutation vol.11, pp.1, 2017, https://doi.org/10.1186/s13287-020-01876-4
  15. Application of CRISPR/Cas9 to human-induced pluripotent stem cells: from gene editing to drug discovery vol.14, pp.1, 2020, https://doi.org/10.1186/s40246-020-00276-2
  16. Epidermolysis bullosa. Possible methods of treatment vol.20, pp.4, 2017, https://doi.org/10.17116/klinderma20212004122
  17. Basic and Preclinical Research for Personalized Medicine vol.11, pp.5, 2017, https://doi.org/10.3390/jpm11050354
  18. Identification of Novel Insulin Resistance Related ceRNA Network in T2DM and Its Potential Editing by CRISPR/Cas9 vol.22, pp.15, 2017, https://doi.org/10.3390/ijms22158129