DOI QR코드

DOI QR Code

Study on phytosphingosine and Phytosphingosine-1-phosphate as a cosmetic ingredient

Phytosphingosine과 Phytosphingosine-1-phosphate의 화장품 소재 특성 연구

  • 문지선 (중원대학교 뷰티헬스학과) ;
  • 김영은 (서울호서전문학교 미용학과) ;
  • 표영희 (오산대학 뷰티디자인계열)
  • Received : 2017.05.24
  • Accepted : 2017.06.29
  • Published : 2017.06.30

Abstract

In this study, it studies about Phytosphingosine (PhS) and Phytosphingosine-1-phosphate(PhS1P), and it tries to confirm the effect through anti-inflammatory, anti-melanin, MMP-1 revelation inhibition, and Western blot analysis experiment after grasping toxicity about 3 cells by using B16F10 melanin cell, RAW264.7 macrophage, and HDF fibroblast in order to find out whether it is possible to use as cosmetic material or not by studying biological activity in terns of skin care. As a result of this experiment, it confirmed that toxicity about B16F10, RAW264.7, HDF cell is low, and PhS1P appeared stronger inhibition activity than PhS in anti-inflammatory NO inhibitory activity experiment. MMP-1 revelation was greater in PhS1P, and it confirmed that the mechanism is due to reduction in ERK activity. On the other hands, melanin generation inhibitory activity is better than arbutin, and it confirmed that the mechanism is due to inhibition of revelation of MTF and Tyrosinase. In a nutshell, PhS and PhS1P that are bioactive substance may confirm the possibility to be used as functional cosmetic for wrinkle and skin improvement of whitening cosmetic.

본 연구에서는 Phytosphingosine(PhS)과 Phytosphingosine-1-phosphate(PhS1P)를 피부 미용 측면에서 생리활성을 연구하여 화장품 소재로서 가능성 여부를 규명하고자 B16F10 멜라닌 세포, RAW264.7 대식 세포, HDF 섬유아세포를 이용하여 3가지 세포에 대한 독성을 파악하고 항염증, 항 멜라닌, MMP-1 발현 억제, Western blot analysis 실험을 통해 효과를 확인 하고자한다. 본 실험 결과 B16F10, RAW264.7, HDF 세포에 대한 독성이 낮은 것으로 확인하였으며, 항염증 NO 저해능 실험에서 PhS1P이 PhS보다 더 강력한 저해활성을 나타냈다. MMP-1 발현 또한 마찬가지로 PhS1P이 더 우수했고, 그 기작은 ERK 활성 감소에 의한 것임을 확인하였다. 한편, 멜라닌 생성 저해능은 알부틴 보다 우수하였으며, 그 작용은 Tyrosinase 발현을 억제하는 것임을 확인하였다. 이상의 결과를 종합하면, 생리활성물질인 PhS과 PhS1P는 주름개선 및 미백화장품의 피부 개선을 위한 기능성화장품으로 활용 가능성을 확인할 수 있었다.

Keywords

References

  1. Kim JH, Lim MJ, Jang JT,Studies on the Biological Activity of N-acetylglucosamine. J. Kor.Soc.Cosm. 12, 21-29. (2006).
  2. Sonali B, Bosena MK., Preparation and characterization of lipid based nanosystems for topical delivery of quercetin. Eur J. Pharm Sci. 40, 442-452. (2013).
  3. Kang BY. Biological Studies of Kaempferol from Green Tea Seed by Enzymatic Hydrolysis and Their Application to Cosmeceuticals. doctoral degree of seoul national university. (2013).
  4. Song YG. Studies on Skin Recovery Efficacies and Feelings of Cosmeceutical Oil from Trichilia dregeana Sond. doctoral degree of ajou university. (2013).
  5. Lee CH, Kim DM, Byun SY. Effect of Liposomal Encapsulation of Astaxanthin from Haematococcus pluvialis on Stabilities for Cosmeceuticals. J. Kor, SB. 28, 381-385 (2011).
  6. Kim HH, Y YH, Leem MH, Choe TB. A Clinical Study for the Effect of Phytosphingosine Solution on the Skin Microbes. J. Kor.Soc.Cosm. 1, 139-145. (2005).
  7. Yu JW. Stereoselective Synthesis of Phytosphingosine and its Analogues. doctoral degree of seoul national university. (1999).
  8. Helmersson J, Arnlöv J, Larsson A, Basu S. Acyclic Stereocontrol by an Allylic Amino Substituent on the Dihydroxylation Reactions of Disubstituted Z-Olefins and a Model Study for Asymmetric Synthesis of Phytosphingosine. J. Nutr. 15, 1-8. (2008).
  9. Koskas JP, Cillard J, Cillard P. Autoxidation of linoleic acid and behavior of its hydroperoxides with and without tocopherols. JAOCS. 61, 1467-1472. (1984).
  10. Oh SH. Antibacterial and anticancer effects of oral rinses containing phytosphingosine. doctoral degree of seoul national university. (1997).
  11. Chung NJ, Joseph H. Phytospingsine as a specific inhibitor of growth and nutrient import in Sacchromyces cerevisiae. J, Biol. Chem, 276, 35614-35621. (2001). https://doi.org/10.1074/jbc.M105653200
  12. Lee MH.. Analysis of Ceramides in Cosmetics by Reversed-Phaseliquid Chroma Tograohy. J. Life Sci. 18, 1053-1058. (2001).
  13. Lee JS, Churlsic Parka, Min DS , Cho NJ. phytosphingosine and C2- phytoceramide induce cell death and inhibit carbacholstimulated phospholipase D activation in chinese hamster ovary cells expressing the Caenorhadibitis elegans muscarinic acetylcholine receptor, FEBS, letters. 499, 82-86. (2001). https://doi.org/10.1016/S0014-5793(01)02527-3
  14. Lee JP, Cha HJ, Lee KS, Lee KK. Phytosphingosine-1-phosphate represses the hydrogen peroxide-induced activation of c-Jun2-N-terminal kinase in human dermal fibroblasts through the 3- phosphatidylinositol 3-kinase/Akt pathway. Archives of Dermatological 4-Research, 304, 673-678. (2012). https://doi.org/10.1007/s00403-012-1241-5
  15. Kim MK, Park KS, Lee H, Kim YD, Yun J, Bae YS. Phytosphingosine-1-phosphate stimulates chemotactic migration of L2071 mouse fibroblasts via pertussis toxinsensitive G-proteins. Exp. Mol. Med., 39, 185-194. (2007). https://doi.org/10.1038/emm.2007.21
  16. Pata MO, Hannun YA, Ng CK. Plant sphingolipids: decoding the enigma of the Sphinx. New. Phytol., 185, 611-630. (2010). https://doi.org/10.1111/j.1469-8137.2009.03123.x
  17. Cha HJ, Lee JP, Lee KS, Lee KK, Choi MJ, Lee DK, Kim KN, An S. Phytosphigosine-1-phosphate increases sensitivity of EGF-dependent cell proliferation. Int. J.Mol. Med., 33, 649-653. (2014). https://doi.org/10.3892/ijmm.2014.1617
  18. Lee JP, Cha HJ, Lee KS, Lee KK, Son JH, Kim KN, Lee DK, An S. Phytosphingosine- 1-phosphate represses the hydrogen peroxide-induced activation of c-Jun N-terminal kinase in human dermal fibroblasts through the phosphatidylinositol 3-kinase/Akt pathway. Arch. Dermatol. Res., 304, 673-678. (2012). https://doi.org/10.1007/s00403-012-1241-5
  19. Lee JP, Lee KS, Lee KK, An Sk, Lee DK. Preparation of Phyto sphingosine-1- phosphate Nano-liposome and Its In Vivo Anti-aging Improvement Effects of Finished Products. Kor. J. Aesthet. Cosmetol., 10, 941-948 (2012).
  20. Inohara S. Studies and perspectives of signal transduction in the skin. Exp. Dermatol., 1, 207-220. (1992). https://doi.org/10.1111/j.1600-0625.1992.tb00079.x
  21. Chung N, Jenkins G, Hannun YA, Heitman J, Obeid LM. Sphingolipids signal heat stress-induced ubiquitindependent proteolysis. J. Biol. Chem., 275, 17229-17232. (2000). https://doi.org/10.1074/jbc.C000229200
  22. Cuvillier O. Sphingosine in apoptosis signaling. Biochim. Biophys. Acta., 1585, 153-162. (2002). https://doi.org/10.1016/S1388-1981(02)00336-0
  23. Hait NC, Oskeritzian CA, Paugh SW, Milstien S, Spiegel S. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim. Biophys. Acta., 1758, 2016-2026. (2006). https://doi.org/10.1016/j.bbamem.2006.08.007
  24. Meier KD, Deloche O, Kajiwara K, Funato K, Riezman H. Sphingoid base is required for translation initiation during heat stress in Saccharomyces cerevisiae. Mol. Biol. Cell, 17, 1164-1175. (2006). https://doi.org/10.1091/mbc.e05-11-1039
  25. Spiegel S, Milstien S. Sphingosine 1-phosphate, a key cell signaling molecule. J. Biol. Chem., 277, 25851-25854, 2002. https://doi.org/10.1074/jbc.R200007200
  26. Borenfreund E, Puerner JA, Toxicity determined in vitro by morphologica lalterationsandneutra lred absorption. Toxicol. Lett., 24, 119. (1985). https://doi.org/10.1016/0378-4274(85)90046-3
  27. Green stork CL, Radiation and aging free radical damage, biological response and possible antioxidant intervention. Med. Hypotheses., 41, 473. (1993). https://doi.org/10.1016/0306-9877(93)90131-9
  28. Lim HW, Cho NY, Yoon MY, Cha SB,Kim KW, Park YK, Lee JY. Effectsofcitruse sentialoils melanin productioninB16 melanima cell. J. YakhakHoeji., 47,25. (2003).
  29. Bakseongi, Dermal anti-aging effects of polypeptides from Astragalus membranaceus Bunge by 2-dimensional electrophoresis. Ajou University Ph. D thesis., (2014).
  30. Choi YA, Signaling pathway of MMP-2 in fibroblast migration and chondrogenic differentiation. Department of Biology kyungpook University., (2007).
  31. Anand M, VanMeter TE, Fillmore HL, Epidermal growth factor induces matrix metalloproteinase-1 (MMP-1) expression and invasion in glioma cell lines via the MAPK pathway. J. Neurooncol., 104, 679. (2011). https://doi.org/10.1007/s11060-011-0549-x
  32. Cuvillier O. Sphingosine in apoptosis signaling. Biochim. Biophys. Acta., 1585, 153-162. (2002). https://doi.org/10.1016/S1388-1981(02)00336-0
  33. Spiegel S, Foster D, Kolesnick R. Signal transduction through lipid second messenger. Curr. Opin. Cell Biol., 8, 159-167. (1996). https://doi.org/10.1016/S0955-0674(96)80061-5
  34. Pettus BJ, Chalfant CE, Hannun YA. Ceramide in apoptosis: an overview and current perspectives. Biochim. Biophys. Acta., 1585, 114-125. (2002). https://doi.org/10.1016/S1388-1981(02)00331-1
  35. Lynch KR, Im DS. Life of the edg. Trends Pharmacol. Sci., 20, 473-5. (1999). https://doi.org/10.1016/S0165-6147(99)01401-7
  36. Spiegel S, Milstien S. Sphingosine-1- phosphate: an enigmatic signaling lipid. Nat. Rev. Mol. Cell. Bil., 4, 397-407. (2003). https://doi.org/10.1038/nrm1103
  37. Hla T, Lee MJ, Ancellin N, Paik JH, Kluk MJ. Lysophospholipids-receptor revelations. Science, 294, 1875-1878. (2001). https://doi.org/10.1126/science.1065323
  38. Pyne S, Pyne NJ. Sphingosine 1-phosphate inmammalian cells. Biochem. J., 349, 385-402. (2000). https://doi.org/10.1042/bj3490385
  39. Spiegel S, Milstien S. Sphingosine-1- phosphate, a key cell signaling molecule. J. Biol. Chem., 277, 25851-25854. (2002). https://doi.org/10.1074/jbc.R200007200
  40. Davaille J, Gallois C, Habib A, Li L, Mallat A, Tao J, et al. Antiproliferative properties of Sphingosine1-phosphate in human hepatic myofibroblasts. A cyclooxygenenase-2 mediated pathway. J. Biol. Chem., 275, 34628-34633. (2000). https://doi.org/10.1074/jbc.M006393200
  41. Hung WC, Chuang LY. Induction of apoptosis by Sphingosine 1-phosphate in humana hepatoma cells is associated with enhanced expression of bax gene product. Biochem. Biophys. Res. Commun., 229, 11-15. (1996). https://doi.org/10.1006/bbrc.1996.1750
  42. Hung G, Baudhuin LM, Xu Y. Sphingosine 1-phosphate modulates growth and adhesion of ovarian cancer cells. FEBS. Let, 460, 513-518. (1999). https://doi.org/10.1016/S0014-5793(99)01400-3
  43. Moore AN, Kampel AW, Zhao X, Hayes RL, Dash PK. Sphingosine 1-phosphate induces apoptosis of cultured hippocampal neurons that requires protein phosphateases and activator protein-1 complexes. Neuroscience, 94, 405-415. (1999). https://doi.org/10.1016/S0306-4522(99)00288-2
  44. Van Brocklyn JR, Tu Z, Edsall LC, Schmidt RR, Spiegel S. Dual actions of Sphingosine 1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J. Cell. Biol., 274, 4626-4632. (1999).
  45. MacMicking J, Xie QW, Nathan C, Nitric oxide and macrophage function. Annu. Rev Immunol., 15, 323. (1997). https://doi.org/10.1146/annurev.immunol.15.1.323
  46. Forsythe P, Gilchrist M, Kulka M, Befus AD. Mast cells and nitric oxide: control of production, mechanisms of response. Int Immunopharmacol., 1, 1525. (2001). https://doi.org/10.1016/S1567-5769(01)00096-0
  47. M. Kamel, M. Hanafi, M. Bassiouni. Inhibition of elastase enzyme release from huma polymorphonuclear leukocytes by N-acetylglucosamine and N-acetyl galactosamine. Clin. Exp. Rheumotol, 9(1), 17-21 (1991).
  48. J.H. Kim, J.M Lim, J.T. Jang, H.P. Yang. Studies on the Biological Activity of N-acetylglucosamine. J. Kor. Soc. Cosm, 12(1), 21-29 (2006).
  49. LalliE, Sassone CP, Signal transduction and regulation: The nuclear responsetoc-AMP. J. Biol. Chem.., 269, 17359. (1994).