DOI QR코드

DOI QR Code

A New Single Phase Multilevel Inverter Topology with Two-step Voltage Boosting Capability

  • Roy, Tapas (School of Electrical Engineering, KIIT University) ;
  • Sadhu, Pradip Kumar (Department of Electrical Engineering, Indian Institute of Technology (ISM)) ;
  • Dasgupta, Abhijit (School of Electrical Engineering, KIIT University)
  • Received : 2017.03.27
  • Accepted : 2017.05.18
  • Published : 2017.09.20

Abstract

In this paper, a new single phase multilevel inverter topology with a single DC source is presented. The proposed topology is developed based on the concepts of the L-Z source inverter and the switched capacitor multilevel inverter. The input voltage to the proposed inverter is boosted by two steps: the first step by an impedance network and the second step by switched capacitor units. Compared to other existing topologies, the presented topology can produce a higher boosted multilevel output voltage while using a smaller number of components. In addition, it provides more flexibility to control boosting factor, size, cost and complexity of the inverter. The proposed inverter possesses all the advantages of the L-Z source inverter and the switched capacitor multilevel inverter like controlling the start-up inrush current and capacitor voltage balancing using a simple switching strategy. The operating principle and general expression for the different parameters of the proposed topology are presented in detail. A phase disposition pulse width modulation strategy has been developed to switch the inverter. The effectiveness of the topology is verified by extensive simulation and experimental studies on a 7-level inverter structure.

Keywords

References

  1. J. Rodriguez, J.-S. Lai, and F. Z. Peng, "Multilevel inverters: a survey of topologies, controls, and applications," IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 724-738, Aug. 2002. https://doi.org/10.1109/TIE.2002.801052
  2. L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, "The age of multilevel converters arrives," IEEE Ind. Electron. Mag., Vol. 2, No. 2, pp. 28-39, Jun. 2008. https://doi.org/10.1109/MIE.2008.923519
  3. K. K. Gupta, A. Ranjan, P. Bhatnagar, L. K. Sahu, and S. Jain, "Multilevel inverter topologies with reduced device count: A review," IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 135-151, Jan. 2016. https://doi.org/10.1109/TPEL.2015.2405012
  4. Q. F. Liu, H. Wang, and Z. Leng, "Discuss on the application of multilevel inverter in high frequency induction heating power supply," in IEEE Region 10 Conference, pp. 1-4, Nov. 2006.
  5. F. Tourkhani, P. Viarouge, and T. A. Meynard, "Optimal design and experimental results of a multilevel inverter for an UPS application," in International Conference on Power Electronics and Drive Systems, pp. 340-343, Vol. 1, May 1997.
  6. Y. Hinago and H. Koizumi, "A switched-capacitor inverter using series/parallel conversion with inductive load," IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 878-887, Feb. 2012. https://doi.org/10.1109/TIE.2011.2158768
  7. J. Liu, K. W. E. Cheng, and Y. Ye, "A cascaded multilevel inverter based on switched-capacitor for high-frequency ac power distribution system," IEEE Trans. Power Electron., Vol. 22, No. 8, pp. 4219-4230, Aug. 2014.
  8. E. Babaei and S. S. Gowgani, "Hybrid multilevel inverter using switched capacitor units," IEEE Trans. Ind. Electron., Vol. 61, No. 9, pp. 4614-4621, Sep. 2014. https://doi.org/10.1109/TIE.2013.2290769
  9. R. Barzegarkhoo, H. M. Kojabadi, E. Zamiry, N. Vosoughi, and L. Chang, "Generalized structure for a single phase switched- capacitor multilevel inverter using a new multiple dc link producer with reduced number of switches," IEEE Trans. Power Electron., Vol. 31, No. 8, pp. 5604-5617, Aug. 2016. https://doi.org/10.1109/TPEL.2015.2492555
  10. E. Zamiri, N. Vosoughi, S. H. Hosseini, R. Barzegarkhoo, and M. Sabahi, "A new cascaded switched-capacitor multilevel inverter based on improved series-parallel conversion with less number of components," IEEE Trans. Ind. Electron., Vol. 63, No. 6, pp. 3582-3594, Jun. 2016. https://doi.org/10.1109/TIE.2016.2529563
  11. M. Saeedifard, R. Iravani, and J. Pou, "Analysis and control of DC capacitor-voltage-drift phenomenon of a passive front-end five-level converter," IEEE Trans. Ind. Electron., Vol. 54, No. 6, pp. 3255-3266, Dec. 2007. https://doi.org/10.1109/TIE.2007.905967
  12. F. H. Khan and L. M. Tolbert, "Bi-directional power management and fault tolerant feature in a 5- kW multilevel dc-dc converter with modular architecture," IET Power Electronics, Vol. 2, No. 5, pp. 595-604, Sep. 2009. https://doi.org/10.1049/iet-pel.2008.0165
  13. E. C. D. Santos, J. H. G. Muniz, E. R. C. da Silva, and C. B. Jacobina, "Nested multilevel topologies," IEEE Trans. Power Electron., Vol. 30, No. 8, pp. 4058-4068, Aug. 2015. https://doi.org/10.1109/TPEL.2014.2351392
  14. G. P. Adam, I. A. Abdelsalam, K. H. Ahmed, and B. W. Williams, "Hybrid multilevel converter with cascaded H-bridge cells for HVDC applications: Operating principle and scalability," IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 65-77, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2303111
  15. M. Hasan, S. Mekhilef, and M. Ahmed, "Three-phase hybrid multilevel inverter with less power electronic components using space vector modulation," IET Power Electronics, Vol. 7, No. 5, pp. 1256-1265, May 2014. https://doi.org/10.1049/iet-pel.2013.0237
  16. E. Babaei, and S. H. Hosseini, "New cascaded multilevel inverter topology with minimum number of switches," Energy Conversion and Management, Vol. 50, No. 11, pp. 2761-2767, Nov. 2009. https://doi.org/10.1016/j.enconman.2009.06.032
  17. F. Z. Peng, "Z-source inverter," IEEE Trans. Ind. Appl., Vol. 39, No. 2, pp. 504-510, Mar./Apr. 2003. https://doi.org/10.1109/TIA.2003.808920
  18. C. J. Gajanayake, F. L. Luo, H. B. Gooi, P. L. So, and L. K. Siow, "Extended boost Z-source inverters," IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2642-2652, Oct. 2010. https://doi.org/10.1109/TPEL.2010.2050908
  19. M. Zhu, K. Yu, and F. L. Luo, "Switched inductor Z-source inverter," IEEE Trans. Power Electron., Vol. 25, No. 8, pp. 2150-2158, Aug. 2010. https://doi.org/10.1109/TPEL.2010.2046676
  20. W. Qian, F. Z. Peng, and H. Cha, "Trans-Z-source inverters," IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3453-3463, Dec. 2011. https://doi.org/10.1109/TPEL.2011.2122309
  21. D. Li, P. C. Loh, M. Zhu, F. Gao, and F. Blaabjerg, "Generalized multicell switched-inductor and switchedcapacitor Z-source inverters," IEEE Trans. Power Electron., Vol. 28, No. 2, pp. 837-848, Feb. 2013. https://doi.org/10.1109/TPEL.2012.2204776
  22. L. Pan, "L-Z-source inverter," IEEE Trans. Power Electron., Vol. 29, No. 12, pp. 6534-6543, Dec. 2014. https://doi.org/10.1109/TPEL.2014.2303978
  23. H. Fathi and H. Madadi, "Enhanced-boost Z-source inverters with switched Z-impedance," IEEE Trans. Ind. Electron., Vol. 63, No. 2, pp. 691-703, Feb. 2016. https://doi.org/10.1109/TIE.2015.2477346
  24. M. Wei, P. C. Loh, and F. Blaabjerg, "Asymmetrical transformer-based embedded Z-source inverters," IET Power Electronics, Vol. 6, No. 2, pp. 261-269, Feb. 2013. https://doi.org/10.1049/iet-pel.2012.0460
  25. D. Li, P. C. Loh, M. Zhu, F. Gao, and F. Blaabjerg, "Cascaded multicell trans-Z-source inverters," IEEE Trans. Power Electron., Vol. 28, No. 2, pp. 826-836, Feb. 2013. https://doi.org/10.1109/TPEL.2012.2205709
  26. A. H. Rajaei, M. Mohamadian, S. M. Dehghan, and A. Yazdian, "Single-phase induction motor drive system using Z-source inverter," IET Electric Power Applications, Vol. 4, No. 1, pp. 17-25, Jan. 2010. https://doi.org/10.1049/iet-epa.2008.0304