References
- Adeli, H. (2001), "Neural networks in civil engineering: 1989-2000", Comput.-Aid. Civil Infrastr. Eng., 16(2), 126-142. https://doi.org/10.1111/0885-9507.00219
- Al-Ghamdi, K.A. and Aspinwall, E. (2014), "Modelling an EDM process using multilayer perceptron network, RSM, and high-order polynomial", Adv. Mech. Eng., 6, 791242.
- Al-Ghamdi, K. and Taylan, O. (2015), "A comparative study on modelling material removal rate by ANFIS and polynomial methods in electrical discharge machining process", Comput. Industr. Eng., 79, 27-41. https://doi.org/10.1016/j.cie.2014.10.023
- Asteris, P.G. and Plevris, V. (2013), "Neural network approximation of the masonry failure under biaxial compressive stress", Proceedings of the 3rd South-East European Conference on Computational Mechanics, 584-598.
- Asteris, P.G., Tsaris, A.K., Cavaleri, L., Repapis, C.C., Papalou, A., Di Trapani, F. and Karypidis, D.F. (2016), "Prediction of the fundamental period of infilled rc frame structures using artificial neural networks", Comput. Intell. Neurosci., 5104907.
- Asteris, P.G. and Plevris, V. (2016), "Anisotropic masonry failure criterion using artificial neural networks", Neur. Comput. Appl., 28(8), 2207-2229.
- Asteris, P.G., Kolovos, K.G., Douvika, M.G. and Roinos, K. (2016), "Prediction of self-compacting concrete strength using artificial neural networks", Eur. J. Environ. Civil Eng., 20, s102-s122. https://doi.org/10.1080/19648189.2016.1246693
- Asteris, P.G., Roussis, P.C. and Douvika, M.G. (2017), "Feed-forward neural network prediction of the mechanical properties of sandcrete materials", Sens., 17(6), 1344. https://doi.org/10.3390/s17061344
- Asteris, P.G. and Kolovos, K.G. (2017), "Self-compacting concrete strength prediction using surrogate models", Neur. Comput. Appl., 1-16.
- Bartlett, P.L. (1998), "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network", IEEE Trans. Informat. Theor., 44(2), 525-536. https://doi.org/10.1109/18.661502
- Berry, M.J.A. and Linoff, G. (1997), Data Mining Techniques, John Wiley & Sons, New York, U.S.A.
- Blum, A. (1992), Neural Networks in C++, Wiley, New York, U.S.A.
- Boger, Z. and Guterman, H. (1997), "Knowledge extraction from artificial neural network models", Proceedings of the IEEE Systems, Man, and Cybernetics Conference, Orlando, Florida, U.S.A.
- Chen, Z. (2013), An Overview of Bayesian Methods for Neural Spike Train Analysis, Computational Intelligence and Neuroscience.
- Das, M.K., Kumar, K., Barman, T.K. and Sahoo, P. (2014), "Prediction of surface roughness in edm using response surface methodology and artificial neural network", J. Manufact. Technol. Res., 6(3-4), 93-112.
- Delen, D., Sharda, R. and Bessonov, M. (2006), "Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks", Accid. Analys. Prevent., 38(3), 434-444. https://doi.org/10.1016/j.aap.2005.06.024
- Dini, G. (1997), "Literature database on applications of artificial intelligence methods in manufacturing engineering", Ann. CIRP, 46(2), 681-690. https://doi.org/10.1016/S0007-8506(07)90005-0
- Giovanis, D.G. and Papadopoulos, V. (2015), "Spectral representation-based neural network assisted stochastic structural mechanics", Eng. Struct., 84, 382-394. https://doi.org/10.1016/j.engstruct.2014.11.044
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neur. Network., 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- Huang, J.C., Chang, H., Kuo, C.G., Li, J.F. and You, Y.C. (2015), "Prediction surface morphology of nanostructure fabricated by nano-oxidation technology", Mater., 8(12), 8437-8451. https://doi.org/10.3390/ma8125468
- Iruansi, O., Guadagnini, M., Pilakoutas, K. and Neocleous, K. (2010), "Predicting the shear strength of RC beams without stirrups using bayesian neural network", Proceedings of the 4th International Workshop on Reliable Engineering Computing (REC 2010).
- Karlik, B. and Olgac, A.V. (2011), "Performance analysis of various activation functions in generalized MLP architectures of neural networks", J. Artific. Intell. Exp. Syst., 1(4), 111-122.
- Kumar, S., Batish, A., Singh, R. and Singh, T.P. (2014), "A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys", J. Mech. Sci. Technol., 28(7), 2831-2844. https://doi.org/10.1007/s12206-014-0637-x
- Lamanna, J., Malgaroli, A., Cerutti, S. and Signorini, M.G. (2012), "Detection of fractal behavior in temporal series of synaptic quantal release events: A feasibility study", Comput. Intell. Neurosci., 3.
- Lourakis, M.I.A. (2005), A Brief Description of the Levenberg-Marquardt Algorithm Implemented by Levmar, Technical Report, Institute of Computer Science, Foundation for Research and Technology, Hellas.
- Mansouri, I. and Kisi, O. (2015), "Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches", Compos. Part B: Eng., 70, 247-255. https://doi.org/10.1016/j.compositesb.2014.11.023
- Mansouri, I., Ozbakkaloglu, T., Kisi, O. and Xie, T. (2016), "Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques", Mater. Struct./Materiaux Constr., 49(10), 4319-4334. https://doi.org/10.1617/s11527-015-0790-4
- Mansouri, I., Gholampour, A., Kisi, O. and Ozbakkaloglu, T. (2016), "Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques", Neur. Comput. Appl., 1-16.
- Mansouri, I., Hu, J.W. and Kisi, O. (2016), "Novel predictive model of the debonding strength for masonry members retrofitted with FRP", Appl. Sci., 6(11), 337. https://doi.org/10.3390/app6110337
- Markopoulos, A.P., Manolakos, D.E. and Vaxevanidis, N.M. (2008), "Artificial neural network models for the prediction of surface roughness in electrical discharge machining", J. Intell. Manufact., 19(3), 283-292. https://doi.org/10.1007/s10845-008-0081-9
- Moghaddam, M.A. and Kolahan, F. (2015), "An optimised back propagation neural network approach and simulated annealing algorithm towards optimisation of EDM process parameters", J. Manufact. Res., 10(3), 215-236. https://doi.org/10.1504/IJMR.2015.071616
- Papadopoulos, V., Giovanis, D.G., Lagaros, N.D. and Papadrakakis, M. (2012), "Accelerated subset simulation with neural networks for reliability analysis", Comput. Meth. Appl. Mech. Eng., 223-224, 70-80. https://doi.org/10.1016/j.cma.2012.02.013
- Pattnaik, S., Karunakar, D.B. and Jha, P.K. (2014), "A prediction model for the lost wax process through fuzzy-based artificial neural network", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(7), 1259-1271. https://doi.org/10.1177/0954406213507701
- Petropoulos, G., Vaxevanidis, N.M. and Pandazaras, C. (2004), "Modeling of surface finish in electrodischarge machining based upon statistical multi-parameter analysis", J. Mater. Process. Technol., 155, 1247-1251.
- Petropoulos, G., Vaxevanidis, N., Iakovou, A. and David, K. (2006), "Multi-parameter modeling of surface texture in EDMachining using the design of experiments methodology", InMater. Sci. For., 526, 157-162.
- Petropoulos, G.P., Vaxevanidis, N.M., Radovanovic, M. and Zoler, C. (2009), "Morphological: Functional aspects of electro-discharge machined surface textures", Strojniski Vestnik, 55(2), 95-103.
- Phadke, M.S. (1989), Quality Engineering Using Design of Experiments, In Quality Control, Robust Design, and the Taguchi Method, Springer US, 31-50.
- Plevris, V. and Asteris, P.G. (2014), "Modeling of masonry compressive failure using neural networks", Proceedings of the 1st International Conference on Engineering and Applied Sciences Optimization, 2843-2861.
- Plevris, V. and Asteris, P.G. (2014), "Modeling of masonry failure surface under biaxial compressive stress using neural networks", Constr. Build. Mater., 55, 447-461. https://doi.org/10.1016/j.conbuildmat.2014.01.041
- Plevris, V. and Asteris, P. (2015), "Anisotropic failure criterion for brittle materials using artificial neural networks", Proceedings of the 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 2259-2272.
- Porwal, R.K., Yadava, V. and Ramkumar, J. (2014), "Neural network based modelling and GRA coupled PCA optimization of hole sinking electro discharge micromachining", J. Manufact. Mater. Mech. Eng., 4(1), 1-21.
- Pradhan, M.K. and Das, R. (2015), "Application of a general regression neural network for predicting radial overcut in electrical discharge machining of AISI D2 tool steel", J. Mach. Mach. Mater., 17(3-4), 355-369.
- Pramanick, A., Saha, N., Dey, P.P. and Das, P.K. (2014), "Wire EDM process modeling with artificial neural network and optimization by grey entropy-based taguchi technique for machining pure zirconium diboride", J. Manufact. Technol. Res., 5(3-4), 99-116.
- Rahman Khan, M.A., Rahman, M.M. and Kadirgama, K. (2014), "Neural network modeling and analysis for surface characteristics in electrical discharge machining", Proc. Eng., 90, 631-636. https://doi.org/10.1016/j.proeng.2014.11.783
- Sarkheyli, A., Zain, A.M. and Sharif, S. (2015), "A multi-performance prediction model based on ANFIS and new modified-GA for machining processes", J. Intell. Manufact., 26(4), 703-716. https://doi.org/10.1007/s10845-013-0828-9
- Shrivastava, P.K. and Dubey, A.K. (2014), "Electrical discharge machining-based hybrid machining processes: A review", Part B: J. Eng. Manufact., 228(6), 799-825. https://doi.org/10.1177/0954405413508939
- Tang, L. and Guo, Y.F. (2014), "Electrical discharge precision machining parameters optimization investigation on S-03 special stainless steel", J. Adv. Manufact. Technol., 70(5-8), 1369-1376. https://doi.org/10.1007/s00170-013-5380-4
- Vaxevanidis, N.M., Kechagias, J.D., Fountas, N.A. and Manolakos, D.E. (2014), "Evaluation of machinability in turning of engineering alloys by applying artificial neural networks", Open Constr. Build. Technol. J., 8(1), 389-399. https://doi.org/10.2174/1874836801408010389
- Vaxevanidis, N.M., Fountas, N., Tsakiris, E., Kalogeropoulos G. and Sideris, J. (2013), "Multi parameter analysis and modeling of surface finish in electro-discharge machining of tool steels", Nonconvent. Technol. Rev., 27(3), 87-90.
- Wang, K., Gelgele, H.L., Wang, Y., Yuan, Q. and Fang, M. (2003), "A hybrid intelligent method for modelling the EDM process", J. Mach. Tool. Manufact., 43, 995-999. https://doi.org/10.1016/S0890-6955(03)00102-0
- Wang, G., Zhou, H., Wang, Y. and Yuan, X. (2014), "Modeling surface roughness based on artificial neural network in mould polishing process", Proceedings of the IEEE International Conference on Mechatronics and Automation, 799-804.
- Xu, Y. and Gao, T. (2016), "Optimizing thermal-elastic properties of C/C-SiC composites using a hybrid approach and PSO algorithm", Mater., 9(4), 222. https://doi.org/10.3390/ma9040222
- Zhang, W., Bao, Z., Jiang, S. and He, J. (2016), "An artificial neural network-based algorithm for evaluation of fatigue crack propagation considering nonlinear damage accumulation", Mater., 9(6), 483. https://doi.org/10.3390/ma9060483
Cited by
- Prediction of Vibration Velocity Generated in Mine Blasting Using Support Vector Regression Improved by Optimization Algorithms vol.29, pp.2, 2020, https://doi.org/10.1007/s11053-019-09597-z
- A Comparison between Finite Element Model (FEM) Simulation and an Integrated Artificial Neural Network (ANN)-Particle Swarm Optimization (PSO) Approach to Forecast Performances of Micro Electro Discha vol.12, pp.6, 2017, https://doi.org/10.3390/mi12060667