References
- Abdelhak, Z., Hadji, L., Daouadji, T. and Bedia, E. (2015), "Thermal buckling of functionally graded plates using an-order four variable refined theory", Adv. Mater. Res., 4(1), 31-44. https://doi.org/10.12989/amr.2015.4.1.31
- Ancy, A. and Parvathy, U. (2016), "Thermal buckling behaviour of functionally graded plates", Appl. Mech. Mater., 857, 279-284. https://doi.org/10.4028/www.scientific.net/AMM.857.279
- Aslan, Z., Karakuzu, R. and Sayman, O. (2002), "Dynamic characteristics of laminated woven E-glassepoxy composite plates subjected to low velocity heavy mass impact", J. Compos. Mater., 36(21), 2421-2442. https://doi.org/10.1177/0021998302036021672
- Bathe, K.J. and Wilson, E.L. (1986), Numerical Methods in Finite Element Analysis, Englewood Cliffs, Prentice-Hall.
- Carvalho, A. and Soares, C.G. (1996), "Dynamic response of rectangular plates of composite materials subjected to impact loads", Compos. Struct., 34(1), 55-63. https://doi.org/10.1016/0263-8223(95)00131-X
- Daniel, A.J. and Dubey, R.N. (2015), "Finite element simulation of earthquake resistant brick masonry building under shock loading", Adv. Struct. Eng., 1027-1038.
- Daouadji, T.H. and Adim, B. (2016), "An analytical approach for buckling of functionally graded plates", Adv. Mater. Res., 5(3), 141-169. https://doi.org/10.12989/amr.2016.5.3.141
- Daouadji, T.H., Benferhat, R. and Adim, B. (2016), "A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load", Adv. Mater. Res., 5(2), 107-120. https://doi.org/10.12989/amr.2016.5.2.107
- Dewey, J.M. (2001), Expanding Spherical Shocks (Blast Waves), Handbook of Shock Waves, Academic Press, Burlington, 441-481.
- Dhiraj, V.S., Jadvani, N. and Kalita, K. (2016), "Stress and strain analysis of functionally graded plates with circular cutout", Adv. Mater. Res., 5(2), 81-92. https://doi.org/10.12989/amr.2016.5.2.081
- Ebrahimi, F., Ehyaei, J. and Babaei, R. (2016), "Thermal buckling of FGM nanoplates subjected to linear and nonlinear varying loads on Pasternak foundation", Adv. Mater. Res., 5(4), 245-261. https://doi.org/10.12989/amr.2016.5.4.245
- Gupta, A.D., Gregory, F.H., Bitting, R.L. and Bhattacharya, S. (1987), "Dynamic analysis of an explosively loaded hinged rectangular plate", Comput. Struct., 26(1-2), 339-344. https://doi.org/10.1016/0045-7949(87)90263-X
- Hebali, H., Bakora, A., Tounsi, A. and Kaci, A. (2016), "A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates", Steel Compos. Struct., 22(3), 473-495. https://doi.org/10.12989/scs.2016.22.3.473
- Hosseini, S.A., Abolbashari, M.H. and Hosseini, S.M. (2016), "Generalized coupled non-Fickian/non-Fourierian diffusion-thermoelasticity analysis subjected to shock loading using analytical method", Struct. Eng. Mech., 60(3), 529-545. https://doi.org/10.12989/sem.2016.60.3.529
- Houlston, R. and Desrochers, C.G. (1987), "Nonlinear structural response of ship panels subjected to air blast loading", Comput. Struct., 26(1-2), 1-15. https://doi.org/10.1016/0045-7949(87)90232-X
- Houlston, R., Slater, J.E., Pegg, N. and Desrochers, C.G. (1985), "On analysis of structural response of ship panels subjected to air blast loading", Comput. Struct., 21(1-2), 273-289. https://doi.org/10.1016/0045-7949(85)90250-0
- Kalnins, A. and Dym, C.L. (1976), Vibration: Beams, Plates, and Shells, Stroudsburg, Dowden, Hutchinson & Ross.
- Kazanci, Z. and Mecitoglu, Z. (2006), "Nonlinear damped vibrations of a laminated composite plate subjected to blast load", AIAA J., 44(9), 2002-2008. https://doi.org/10.2514/1.17620
- Kumari, E. and Singha, M. (2017), "Nonlinear response of laminated panels under blast load", Proc. Eng., 173, 539-546. https://doi.org/10.1016/j.proeng.2016.12.086
- Librescu, L. and Nosier, A. (1990), "Response of laminated composite flat panels to sonic boom and explosive blast loadings" AIAA J., 28(2), 345-352. https://doi.org/10.2514/3.10395
- Librescu, L., Oh, S.Y. and Hohe, J. (2004), "Linear and non-linear dynamic response of sandwich panels to blast loading", Compos. Part B: Eng., 35(6-8), 673-683. https://doi.org/10.1016/j.compositesb.2003.07.003
- Liou, W., Tseng, C. and Chao, L. (1996), "Stress analysis of laminated E-glass epoxy composite plates subject to impact dynamic loading", Comput. Struct., 61(1), 1-11. https://doi.org/10.1016/0045-7949(96)00020-X
- Louca, L.A., Pan, Y.G. and Harding, J.E. (1998), "Response of stiffened and unstiffened plates subjected to blast loading", Eng. Struct., 20(12), 1079-1086. https://doi.org/10.1016/S0141-0296(97)00204-6
- Mazek, S.A. and Wahab, M.M. (2015), "Impact of composite materials on buried structures performance against blast wave", Struct. Eng. Mech., 53(3), 589-605. https://doi.org/10.12989/sem.2015.53.3.589
- Moradipour, P., Chan, T.H. and Gallag, C. (2015), "An improved modal strain energy method for structural damage detection, 2D simulation", Struct. Eng. Mech., 54(1), 105-119. https://doi.org/10.12989/sem.2015.54.1.105
- Needham, C.E. (2012), Blast Waves, Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, Germany.
- Olson, M.D. (1991), "Efficient modelling of blast loaded stiffened plate and cylindrical shell structures", Comput. Struct., 40(5), 1139-1149. https://doi.org/10.1016/0045-7949(91)90385-Y
- Pack, D.C. (1957), "The reflection and transmission of shock waves I: The reflection of a detonation wave at a boundary", Philosoph. Mag., 2(14), 182-188. https://doi.org/10.1080/14786435708243807
- Rajamani, A. and Prabhakaran, R. (1977a), "Dynamic response of composite plates with cut-outs, part I: Simply-supported plates", J. Sound Vibr., 54(4), 549-564. https://doi.org/10.1016/0022-460X(77)90612-5
- Rajamani, A. and Prabhakaran, R. (1977b), "Dynamic response of composite plates with cut-outs, part II: Clamped-clamped plates", J. Sound Vibr., 54(4), 565-576. https://doi.org/10.1016/0022-460X(77)90613-7
- Rajamani, A. and Prabhakaran, R. (1980), "Response of composite plates to blast loading", Exper. Mech., 20(7), 245-250. https://doi.org/10.1007/BF02327708
- Ramajeyathilagam, K., Vendhan, C.P. and Rao, V.B. (2000), "Non-linear transient dynamic response of rectangular plates under shock loading", J. Imp. Eng., 24(10), 999-1015. https://doi.org/10.1016/S0734-743X(00)00018-X
- Reddy, J.N. (1983), "Geometrically nonlinear transient analysis of laminated composite plates", AIAA J., 21(4), 621-629. https://doi.org/10.2514/3.8122
- Redekop, D. (1994), "Dynamic response of a toroidal shell panel to blast loading", Comput. Struct., 51(3), 235-239. https://doi.org/10.1016/0045-7949(94)90331-X
- Redekop, D. and Azar, P. (1991), "Dynamic response of a cylindrical shell panel to explosive loading", J. Vibr. Acoust., 113(3), 273-278. https://doi.org/10.1115/1.2930181
- Shabana, A.A. (1996), Forced Vibration, Theory of Vibration: An Introduction, Springer, New York, U.S.A.
- Shim, C., Lee, P. and Chang, S. (2001), "Design of shear connection in composite steel and concrete bridges with precast decks", J. Constr. Steel Res., 57(3), 203-219. https://doi.org/10.1016/S0143-974X(00)00018-3
- Shim, C., Yun, N., Yu, R. and Byun, D. (2012), "Mitigation of blast effects on protective structures by aluminum foam panels", Metal., 2(2), 170-177. https://doi.org/10.3390/met2020170
- Turkmen, H.S. (1998), "Dynamic response of laminated composite panels subjected to blast loading", Ph.D. Dissertation, Istanbul Technical University.
- Turkmen, H.S. (2002), "Structural response of laminated composite shells subjected to blast loading: Comparison of experimental and theoretical methods", J. Sound Vibr., 249(4), 663-678. https://doi.org/10.1006/jsvi.2001.3861
- UFC (2008), Structures to Resist the Effects of Accidental Explosions, Unified Facilities Criteria, United States Army, US Government Printing Office, Washington, U.S.A.
- Upadhyay, A.K., Pandey, R. and Shukla, K.K. (2011), "Nonlinear dynamic response of laminated composite plates subjected to pulse loading", Commun. Nonlin. Sci. Numer. Simulat., 16(11), 4530-4544. https://doi.org/10.1016/j.cnsns.2011.03.024
- Uyaner, M. and Kara, M. (2007), "Dynamic response of laminated composites subjected to low-velocity impact", J. Compos. Mater., 41(24), 2877-2896. https://doi.org/10.1177/0021998307079971
- Wang, Y., Xu, C., Wan, Y., Li, J., Yu, H. and Ren, L. (2016), "A modal approach for the efficient analysis of a bionic multi-layer sound absorption structure", Steel Compos. Struct., 21(2), 249-266. https://doi.org/10.12989/scs.2016.21.2.249
- Wiernicki, C.J., Liem, F., Woods, G.D. and Furio, A.J. (1991), "Structural analysis methods for lightweight metallic corrugated core sandwich panels subjected to blast loads", Naval Eng. J., 103(3), 192-202. https://doi.org/10.1111/j.1559-3584.1991.tb00949.x
- Yun, N.R., Park, S.D., Muhit, I.B. and Shim, C.S. (2014), "Impact tests on aluminum foams", Proceedings of the 4th International Technical Conference, Seoul, Korea, November.