DOI QR코드

DOI QR Code

Platinum nanocomposites and its applications: A review

  • Sharon, Madhuri (Walchand Centre for Research in Nanotechnology and Bionanotechnology) ;
  • Nandgavkar, Isaac (Walchand Centre for Research in Nanotechnology and Bionanotechnology) ;
  • Sharon, Maheshwar (Walchand Centre for Research in Nanotechnology and Bionanotechnology)
  • 투고 : 2017.01.20
  • 심사 : 2017.06.02
  • 발행 : 2017.06.25

초록

Platinum is a transition metal that is very resistant to corrosion. It is used as catalyst for converting methyl alcohol to formaldehyde, as catalytic converter in cars, for hydrocracking of heavy oils, in Fuel Cell devices etc. Moreover, Platinum compounds are important ingredient for cancer chemotherapy drugs. The nano forms of Platinum due to its unique physico-chemical properties that are not found in its bulk counterpart, has been found to be of great importance in electronics, optoelectronics, enzyme immobilization etc. The stability of Platinum nanoparticles has supported its use for the development of efficient and durable proton exchange membrane Fuel Cells. The present review concentrates on the use of Platinum conjugated with various metal or compounds, to fabricate nanocomposites, to enhance the efficiency of Platinum nanoparticles. The recent advances in the synthesis methods of different Platinum-based nanocomposites and their applications in Fuel Cell, sensors, bioimaging, light emitting diode, dye sensitized solar cell, hydrogen generation and in biosystems has also been discussed.

키워드

참고문헌

  1. Arenz, M., Karl, J., Mayrhofer, K.J.J., Stamenkovic, V., Blizanac, B.B., Tomoyuki, T., Ross, P.N. and Markovic, N.M. (2005), "The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts", J. Am. Chem. Soc., 127(18), 6819-6829. https://doi.org/10.1021/ja043602h
  2. Avaji, P.G., Joo, H.I., Park, J.H., Park, K.S., Joo, Y.J., Lee, H.J. and Sohn, Y.S. (2014), "Synthesis and properties of a new micellar polyphosphazene-Pt(II) conjugate drug", J. Inorg. Biochem., 140, 45-52. https://doi.org/10.1016/j.jinorgbio.2014.06.014
  3. Awasthi, R.N. and Sharma, C.S. (2014), "Review, an overview of recent development of Pt based cathode materials for direct methanol fuel cell", J. Electrochem. Sci., 9, 5607-5639.
  4. Bar-Ziv, R., Michael, S., Vladimir, S. and Dan, M. (2015), "Coating Pt NP with methyl radicals: Effects on properties and catalytic implications", Chem. Eur. J., 21(52), 19000. https://doi.org/10.1002/chem.201503074
  5. Bian, X.J., Lu, X.F., Jin, E., Kong, L.R., Zhang, W.J. and Wang, C. (2010), "Fabrication of Pt/polypyrrole hybrid hollow microspheres and their application in electrochemical biosensing towards hydrogen peroxide", Talanta, 81(3), 813-818. https://doi.org/10.1016/j.talanta.2010.01.020
  6. Bo, X., Ndamanisha, J.C., Bai, J. and Guo, L.P. (2010), "Nonenzymatic amperometric sensor for hydrogen peroxide and glucose based on Pt NP ordered mesoporous carbon nanocomposite", Talanta, 82(1), 85-91. https://doi.org/10.1016/j.talanta.2010.03.063
  7. Bonnemann, H. and Richards, R.M. (2010), "Nanoscopic metal particles-synthetic methods and potential applications", Eur. J. Inorg. Chem., 2001(10), 2455-2480. https://doi.org/10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-Z
  8. Boryana, B., Sanchez, A., Jimenez-Falcao, S., Martin, M., Salazar, P., Parrado, C., Pingarrón, J.M. and Villalonga, R. (2016), "Reduced graphene oxide-carboxymethylcellulose layered with Pt NP/PAMAM dendrimer/magnetic NP hybrids. Application to the preparation of enzyme electrochemical biosensors", Sensor. Actuat. B, Chem., 232, 84-90. https://doi.org/10.1016/j.snb.2016.02.106
  9. Chauhan, K.R., Solanki, P.R. and Basu, T. (2013), "Development of impedimetric biosensor for total cholesterol estimation based on polypyrrole and Pt NP multi later nanocomposite", J. Org. Chem., 3(4), 262-274.
  10. Chen, X., Wu, Y., Dong, H., Zhang, C.Y. and Zhang, Y. (2013), "Pt-based agents for, individualized cancer treatment", Curr. Mol. Med., 13(10), 1603-1612. https://doi.org/10.2174/1566524013666131111125515
  11. Dey, R.S. and Raj, C.R. (2010), "Development of an amperometric cholesterol biosensor based on grapheme-Pt nanoparticle hybrid material", J. Phys. Chem. C, 114(49), 21427-21433. https://doi.org/10.1021/jp105895a
  12. Diloyan, G., Marcus, S., Das, K. and Hutapea, P. (2012), "Effect of mechanical vibration on Pt particle agglomeration and growth in polymer electrolyte membrane fuel cell catalyst layers", J. Pow. Source, 214, 59-67. https://doi.org/10.1016/j.jpowsour.2012.04.027
  13. Dobrzanska-Danikiewicz, A.D. and Kukowiec, D. (2013), "Synthesis and characterization of Pt/MWCNT nanocomposites", Phys. Stat. Sol. B, 250(12), 1-6. https://doi.org/10.1002/pssb.201341601
  14. Dutt, S. and Siril, P.F. (2015), "Controlling the morphology of polyaniline-Pt nanocomposites using swollen liquid crystal templates", Synthet. Metal., 209, 82-909. https://doi.org/10.1016/j.synthmet.2015.07.012
  15. Engin, C., Sabolsky, K. and Sabolsky, E.M. (2013), "Pt thin film electrodes for high-temperature chemical sensor applications", Sens. Actuat. B, Chem., 181, 702-714. https://doi.org/10.1016/j.snb.2013.02.058
  16. Engin, E., Huseyin, C. and Erk, N. (2016), "A novel electrochemical nano-platform based on graphene/Pt NP/nafion composites for the electrochemical sensing of metoprolol", Sens. Actuat. B, Chem., 238, 779-787.
  17. Esumi, K., Takei, N. and Yoshimura, T. (2003), "Antioxidant-potentiality of gold-chitosan nanocomposites", Coll. Surf. B, 32(2), 117-123. https://doi.org/10.1016/S0927-7765(03)00151-6
  18. Evans, S.A.G., Elliott, J.M., Andrews, L.M., Bartlett, P.N., Doyle, P.J. and Denuault, G. (2002), "Detection of hydrogen peroxide at mesoporous Pt microelectrodes", Anal. Chem., 74(6), 1322-1326. https://doi.org/10.1021/ac011052p
  19. Ferreira, V.C., Melato, A.I., Silva, A.F. and Abrantes, L.M. (2011), "Conducting polymers with attached Pt NP towards the development of DNA biosensors", Electrochem. Commun., 13(9), 993-996. https://doi.org/10.1016/j.elecom.2011.06.021
  20. Gooding, J.J., Praig, V.G., Hall, E.A.H. and Gooding, J.J. (1998), "Pt-catalyzed enzyme electrodes immobilized on gold using self-assembled layers", Anal. Chem., 70(11), 2396-2402. https://doi.org/10.1021/ac971035t
  21. Gouldsmith, F. and Wilson S. (1963), "Extraction and refining of the Pt metals a complex cycle of smelting, electrocatalytic and chemical operations", Pt Met. Rev., 7(41), 136-143.
  22. Gouse, P.S., Sahu, A.K., Arunchander, A., Nath, K. and Bhat, S.D. (2015), "Deoxyribonucleic acid directed metallization of Pt NP on graphite nanofibers as a durable oxygen reduction catalyst for polymer electrolyte fuel cells", J. Pow. Sour., 297, 379-387. https://doi.org/10.1016/j.jpowsour.2015.08.009
  23. Gowthaman, N.S.K., Srinivasan K. and Abraham, J.S. (2016), "Monitoring isoniazid level in human fluids in the presence of theophylline using gold @ Pt core@shell NP modified glassy carbon electrode", Sens. Actuat. B, Chem., 230, 157-166. https://doi.org/10.1016/j.snb.2016.02.042
  24. Halakoo, E., Khademi, A., Ghohari, M. and Ismail, A.F. (2015), "Production of sustainable energy by carbon nanotube/Pt catalyst in microbial fuel cell", Proc. CIRP, 26, 473-476. https://doi.org/10.1016/j.procir.2014.07.034
  25. Haridas, D., Chowdhuri, A., Sreenivas, K. and Gupta, V. (2011), "Effect of thickness of Pt catalyst clusters on response of SnO2 thin film sensor for LPG", Sens. Actuat. B, Chem., 153(1), 89-95. https://doi.org/10.1016/j.snb.2010.10.013
  26. He, G., Yang, S., Liu, K., Walter, A., Chen, S. and Chen, S. (2013), "Oxygen reduction catalyzed by Pt NP supported on graphene quantum dots", ACS Catal., 3, 831-838. https://doi.org/10.1021/cs400114s
  27. Hosseini, S.Y., Raoof, J.B., Ghasemi, S. and Gholami, Z. (2015), "Synthesis of Pt-Cu/poly(o-Anisidine)nanocomposite onto carbon paste electrode and its application for methanol oxidation", J. Hydrog. Energy, 40, 292-302. https://doi.org/10.1016/j.ijhydene.2014.10.104
  28. Hu, Z., Wang, Y., Shi, D., Tan, H., Li, X., Wang, L., Zhu, W. and Cao, Y. (2010), "Highly-efficiency redemitting Pt (II) complexes containing 4′-diarylamino-1-phenylisoquinoline ligands in polymer lightemitting diodes, synthesis, structure, photoelectron and electroluminescence", Dyes Pigm., 86(2), 166-173. https://doi.org/10.1016/j.dyepig.2009.12.014
  29. Huang, H.Z. and Yang X.R. (2003), "Chitosan mediated assembly of gold NP multilayer", Coll. Surf. A, 226(1-3), 77-86. https://doi.org/10.1016/S0927-7757(03)00382-0
  30. Huang, Y., Zhao, T., Lin, Z., Peng, T. and Xu, J. (2016), "A facile approach for preparation of highly dispersed Pt-copper/carbon nanocatalyst toward formic acid electro-oxidation", Electrochim. Acta, 190, 956-963. https://doi.org/10.1016/j.electacta.2015.12.223
  31. Hui, M., Zhan, Y., Zeng, D., Zhang, X., Zhang, G. and Jaouen, F. (2015), "Factors influencing the growth of Pt nanowires via chemical self-assembly and their fuel cell performance", Small, 11(27), 3377-3386. https://doi.org/10.1002/smll.201402904
  32. Hummers, W.S. and Offman, R. (1958), "Preparation of graphitic oxide", J. Am. Chem. Soc., 80, 1339-1342. https://doi.org/10.1021/ja01539a017
  33. Iijima, Y. and Sakaue, H. (2012), "Pt porphyrin and luminescent polymer for two-color pressure- and temperature-sensing probes", Sens. Actuat. A, Phys., 184, 128-133. https://doi.org/10.1016/j.sna.2012.06.033
  34. Jian, F., Zhou, R., Yao, Z., Du, Y., Xu, J., Yang. P. and Wang, C. (2011), "Facile fabrication of Pt-Cu nanoclusters-decorated porous poly(5-cyanoindole) with high electrocatalytic activity", J. Electrochem. Sci., 6, 4114-4126.
  35. Kaewsai, D., Lin, H., Liu, Y. and Yu, T.L. (2016), "Pt on pyridine-polybenzimidazole wrapped carbon nanotube supports for high temperature proton exchange membrane fuel cells", J. Hydrog. Energy, 41(24), 10430-10445. https://doi.org/10.1016/j.ijhydene.2015.09.066
  36. Kalisman, P., Nakibli, Y. and Amirav, L. (2016a), "Perfect photon-to-hydrogen conversion efficiency", Nano Lett., 16(3), 1776-1781. https://doi.org/10.1021/acs.nanolett.5b04813
  37. Kalisman, P., Lothar, H., Eran, A., Yaron, K., Maya, B.S. and Lilac, A. (2015), "The golden gate to photocatalytic hydrogen production", J. Mater. Chem. A, 3, 19679-19682. https://doi.org/10.1039/C5TA05784A
  38. Kamrul, H., Uddin, A.S.M., Iftekhar, U., Kim, F. and Chung, G.S. (2016), "Pt/palladium bimetallic ultrathin film decorated on a one-dimensional ZnO nanorods array for use as fast response flexible hydrogen sensor", Mater. Lett., 176, 232-236. https://doi.org/10.1016/j.matlet.2016.04.138
  39. Kang, X., Mai, Z., Zou, X., Cai, P. and Mo, J. (2008), "Glucose biosensors based on Pt NP-deposited carbon nanotubes in sol-gel chitosan/silica hybrid", Talanta, 74(4), 879-886. https://doi.org/10.1016/j.talanta.2007.07.019
  40. Kempegowda, R., Antony, D. and Malingappa, P. (2014), "Graphite-Pt nanocomposite as a sensitive and selective voltammetric sensor for trace level arsenic quantification", J. Smart Nano Mater., 5(1), 17-32. https://doi.org/10.1080/19475411.2014.898710
  41. Kim, J., Takahashi, M. and Shimizu, T. (2008), "Effects of a potent antioxidant, Pt nanoparticle, on the lifespan of caenorhabditis elegans", Mech. Age. Dev., 129(6), 322-331. https://doi.org/10.1016/j.mad.2008.02.011
  42. Kim, Y.J., Kim, D., Lee, Y., Choi, S.Y., Park, J., Lee, S.Y., Park, J.W. and Kwon, H.J. (2008), "Effect of nanoparticulate saponin-Pt conjugates on 2,4-dinitrofluorobenzene-induced macrophage inflammatory protein-2 gene expression via reactive oxygen species production in RAW 264.7 cells", BMB Rep., 304-309.
  43. Kou, R., Shao, Y., Mei, D., Nie, Z., Wang, D., Wang, C., Viswanathan, V.V., Park, S., Aksay, I.A., Lin, Y., Wong, Y. and Liu, J. (2011), "Stabilization of electrocatalytic metal NP at metal-metal oxide-fraphite triple junction points", J. Am. Chem. Soc., 133, 2541-2547. https://doi.org/10.1021/ja107719u
  44. Krebs, R.E. (1998), Pt-The History and Use of our Earth's Chemical Elements, Greenwood Press, 124-127.
  45. Lalande, G., Denis, M.C., Gouerec, P., Guay, D., Dodelet, J.P. and Schuls, R. (2000), "Pt based nanocomposites produced by high enrgy ball milling as electrocatalysts in polymer electrolyte fuel cell", J. New Mater. Electrochem. Syst., 3, 185-192.
  46. Lee, J., Kim, H., Sim, T. and Song, R. (2013), "A new quantum dot-Pt conjugate for self-assembled nanoconjugates by coordination bonding mediated recognition", Chem. Commun., 49, 6182-6184. https://doi.org/10.1039/c3cc42245c
  47. Li, F.H., Chai, J., Yang, H.F., Han, D.X. and Niu, L. (2010), "Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine", Talanta, 81, 1063-1068. https://doi.org/10.1016/j.talanta.2010.01.061
  48. Li, L., Chow, W., Wong, W., Chui, C. and Wong, R.S. (2011), "Synthesis, characterization and photovoltaic behavior of Pt acetylide polymers with electron-deficient 9, 10-anthraquinone moiety", J. Organometal. Chem., 696(6), 1189-1197. https://doi.org/10.1016/j.jorganchem.2010.08.044
  49. Li, M., Wu, X., Zeng, J., Hou, Z. and Liao, S. (2015), "Heteroatom doped carbon nanofibers synthesized by chemical vapor deposition as Pt electrocatalyst supports for polymer electrolyte membrane fuel cells", Electrochim. Acta, 182, 351-360. https://doi.org/10.1016/j.electacta.2015.09.122
  50. Li, Y., Zhang, J.J., Xuan, J., Jiang, L.P. and Zhu, J.J. (2010), "Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposite", Electrochem. Commun., 12(6),777-780. https://doi.org/10.1016/j.elecom.2010.03.031
  51. Li, Z., Cui, X., Zhang, X., Wang, Q., Shao, Y. and Lin, Y. (2009), "Pt/carbon nanofibers nanocomposite as electrocatalysts for direct methanol fuel cells, prominent effects of carbon nanofibers nanostructures", J. Nanosci. Nanotechnol., 9, 2316-2323. https://doi.org/10.1166/jnn.2009.SE44
  52. Lian, W., Liu, S., Yu, J., Xing, X., Li, J., Cui, M. and Huang, J. (2012), "Electrochemical sensor based on gold NP fabricated molecularly imprinted polymer film at chitosan-Pt NP/grapheme-gold NP double nanocomposites modified electrode for detection of erythromycin", Biosens. Bioelectron., 38(1), 163-169. https://doi.org/10.1016/j.bios.2012.05.017
  53. Liang, A., Li, Y., Zhu, W., Wang, Y., Huang, F., Wu, H. and Cao, Y. (2013), "Novel cyclometalated Pt (II) complex containing carrier-transporting groups, Synthesis, luminescence and application in single dopant white PLEDs", Dyes Pigm., 96(3), 732-737. https://doi.org/10.1016/j.dyepig.2012.11.006
  54. Liao, C., Chen, C., Chang, C., Hwang, G., Chou, H. and Cheng, C. (2013), "Synthesis of conjugated polymers bearing indacenodithiophene and cyclometalated Pt(II) units and their application in organic photovoltaics", Sol. Energy Mater. Sol. Cells, 109, 111-119. https://doi.org/10.1016/j.solmat.2012.09.033
  55. Lin, C.L. and Wang, C.C. (2014), "Enhancement of electroactivity of Pt-tungsten trioxide nanocomposites with NaOH-treated carbon support toward methanol oxidation reaction", Energy Proc., 61, 538-541. https://doi.org/10.1016/j.egypro.2014.11.1165
  56. Lin., Y., Cui, X., Wang, J., Yen, C.H. and Wai, C.M. (2006), "Pt and Pt-Ru/carbon nanotube nanocomposite synthesized in super critical fluid as electrocatalyst for low temperature fuel cells", NSTI Nanotech, 1, 524-527.
  57. Liu, Q., Zhu, N., Ho, C., Fu, Y., Lau, W., Xie, Z., Wang, L. and Wong, W. (2016), "Synthesis, characterization, photophysical and photovoltaic properties of new donor-acceptor Pt (II) acetylide complexes", J. Organometal. Chem., 812, 2-12. https://doi.org/10.1016/j.jorganchem.2015.06.017
  58. Liu, S.H., Chang, C.C., Wu, M.T. and Liu, S.B. (2010), "Electrochemical activity and durability of Pt NP supported on ordered mesoporous carbons for oxygen reduction reaction", J. Hydrog. Energy, 35, 8149-8154. https://doi.org/10.1016/j.ijhydene.2009.12.183
  59. Liu, Y., Wang, D.W., Xu, L., Hou, H.Q. and You, T.Y. (2011), "A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing", Biosens. Bioelectron., 26(11), 4585-4590. https://doi.org/10.1016/j.bios.2011.05.034
  60. Lu, Y., Yang, M., Qu, F., Shen, G. and Yu, R. (2008), "Seed-mediated growth of Pt NP on carbon nanotubes for the fabrication of electrochemical biosensors", Electrochim. Acta, 53(10), 3559-3565. https://doi.org/10.1016/j.electacta.2007.11.083
  61. Maiyalagan, T., Wang, X. and Manthiram, A. (2014), "Highly active Pd and Pd-Au NP supported on functionalized graphene nanoplatelets for enhanced formic acid oxidation", RCS Adv., 4, 4028-4033.
  62. Manokaran, J., Muruganatham, R., Muthukrishnaraj, A. and Balasubramanian, N. (2015), "Pt-$Polydopamine@SiO_2$ modified electrode for the electrochemical determination of Quercetin", Electrochim. Acta, 168, 16-24. https://doi.org/10.1016/j.electacta.2015.04.016
  63. Narayanamoorthy, B., Pavan Kumar, B.V.V.S., Eswaramoorthy, M. and Balaji, S. (2014), "Oxygen reduction reaction catalyzed by Pt nanonetwork prepared by template free one step synthesis for polymer electrolyte membrane fuel cells", Mater. Res. Bullet., 55, 137-145. https://doi.org/10.1016/j.materresbull.2014.04.005
  64. Narayanan, R. and El-Sayed, M.A. (2004), "Shape-dependent catalytic activity of Pt NP in colloidal solution", Nano Lett., 4(7), 1343-1348. https://doi.org/10.1021/nl0495256
  65. Oberoi, H.S., Nukolova, N.V., Kabanov, A.V. and Bronich, T.K. (2013), "Nanocarriers for delivery of Pt anticancer drugs", Adv. Drug Deliv. Rev., 65(13-14), 1667-1685. https://doi.org/10.1016/j.addr.2013.09.014
  66. Oh, J., Park, J., Kumbhar, A., Smith, D.J. and Creager, S. (2014), "Electrochemical oxygen reduction at Pt/mesoporous carbon/zirconia/ionomer thin-film composite electrodes", Electrochim. Acta, 138, 278-287. https://doi.org/10.1016/j.electacta.2014.06.111
  67. Olujinmi, M.F., Sadiku, E.R. and Maity, A. (2011), "Preparation and characterization of poly(Nvinylcarbazole)/ Pt nanocomposite via in situ solid state polymerization", Can. J. Pure Appl. Sci., 5(3), 1713-1719.
  68. Ou, C.F., Yuan, R., Chai, Y., Tang, M., Chai, R. and He, X. (2007), "A novel amperometric immunosensor based on layer-by-layer assembly of gold NP-multi-walled carbon nanotubes-thionine multilayer films on polyelectrolyte surface", Anal. Chim. Acta, 603(2), 205-213. https://doi.org/10.1016/j.aca.2007.08.052
  69. Pasha, S.S., Das, P., Rath, N.P., Bandyopadhyay, D., Jana, N.R. and Laskar, I.R. (2016), "Water soluble luminescent cyclometalated Pt(II) complex-a suitable probe for bio-imaging applications", Inorg. Chem. Commun., 67, 107-111. https://doi.org/10.1016/j.inoche.2016.03.017
  70. Puthusseri, D. and Ramaprabhu, S. (2016), "Oxygen reduction reaction activity of Pt NP decorated nitrogen doped carbon in proton exchange membrane fuel cell under real operating conditions", J. Hydrog. Energy, 41(30), 13163-13170. https://doi.org/10.1016/j.ijhydene.2016.05.146
  71. Quaino, P., Fernanda, J., Santos, E. and Wolfgang, S. (2014), "Volcano plots in hydrogen electrocatalysisuses and abuses", Beilst. J. Nanotechnol., 5, 846-854. https://doi.org/10.3762/bjnano.5.96
  72. Raicopol, M.D., Andronescu, C., Atasiei, R., Hanganu, A., Vasile, E., Brezoiu, A.M. and Pilan, L. (2016), "Organic layers via aryl diazonium electrochemistry, towards modifying Pt electrodes for interference free glucose biosensors", Electrochim. Acta, 206, 226-237. https://doi.org/10.1016/j.electacta.2016.04.145
  73. Rathod, D., Dickinson, C., Egan, D. and Dempsey, E. (2010), "Pt NP decoration of carbon materials with applications in non-enzymatic glucose sensing", Sens. Actuat. B, Chem., 143(2), 547-554. https://doi.org/10.1016/j.snb.2009.09.064
  74. Roy, N., Keung, K.T. and Pradhan, D. (2015), "Nitrogen doped reduced graphene oxide based Pt-$TiO_2$ nanocomposite for enhanced hydrogen evolution", J. Phys. Chem., 119(33), 19117-19125.
  75. Sakaue, Y., Kim, J. and Miyamoto, Y. (2010), "Effects of TAT-conjugated Pt NP on life span of mitochondrial electron transport complex I-deficient caenorhabditis elegans nuo-I", J. Nanomed., 5, 687-695. https://doi.org/10.2217/nnm.10.47
  76. Sambandam, S., Valluri, V., Chanmanee, W., De Tacconi, N.R., Wampler, W.A., Lin, W., Carlson, T.F., Ramani, V. and Rajeswar, K. (2009), "Pt-carbon black-Titanium dioxide nanocomposite electrocatalyst for fuel cell application", J. Chem. Sci., 121(5), 655-664. https://doi.org/10.1007/s12039-009-0079-7
  77. Santos, D.S., Goulet, P.J. and Pieczonka, N.P. (2004), "Gold nanoparticle embedded, self-sustained chitosan films as substrates for surface-enhanced Raman scattering", Langmuir, 20(23), 10273-10277. https://doi.org/10.1021/la048328j
  78. Sarikaya, M., Tamerler, C., Jen, A.K.Y., Schulten, K. and Banyex, F. (2003), "Molecular biomimetics, nanotechnology through biotechnology", Nat. Mater., 2, 577-585. https://doi.org/10.1038/nmat964
  79. Seifitokaldani, A. and Savadogo, O. (2015), "Electrochemically stable titanium oxy-nitride support for Pt electro-catalyst for PEM fuel cell applications", Electrochim. Acta, 167, 237-245. https://doi.org/10.1016/j.electacta.2015.03.189
  80. Siriviriyanun, A., Imae, T. and Nagatani, N. (2013), "Electrochemical biosensors for biocontaminant detection consisting of carbon nanotubes, Pt NP, dendrimers and enzymes", Analyt. Biochem., 443(2), 169-171. https://doi.org/10.1016/j.ab.2013.09.004
  81. Sripada, R., Nirmal, R.G., Mathiyarasu, J., Berchmans, S., Phani, K.L.N. and Yegnaraman, V. (2007), "Ptdendrimer nanocomposite films on gold surface for electrocatalysis", Catal. Lett., 119, 40-49. https://doi.org/10.1007/s10562-007-9154-1
  82. Sripada, R., Parambath, M.B., Santhosh, P., Nair, N. and Ramaprabhu, S. (2015), "Pt and Pt-iron alloy NP dispersed nitrogen-doped graphene as high performance room temperature hydrogen sensor", J. Hydrog. Energy, 40(32), 10346 -10353. https://doi.org/10.1016/j.ijhydene.2015.06.018
  83. Stegmeier, S., Fleischer, M. and Hauptmann, P. (2010b), "Thermally activated Pt as VOC sensing material for work function type, gas sensors", Sens. Actuat. B, Chem., 144(2), 418-424. https://doi.org/10.1016/j.snb.2009.02.021
  84. Stegmeier, S., Fleischer, M. and Hauptmann, P. (2010a), "Influence of the morphology of Pt combined with ${\beta}-Ga_2O_3$ on the VOC response of work function type sensors", Sens. Actuat. B, Chem., 148(2), 439-449. https://doi.org/10.1016/j.snb.2010.05.030
  85. Sui, S., Zhuo, X., Su, K. Yao, X., Zhang, J., Du, S. and Kendall, K. (2013), "In situ grown nanoscale Pt on carbon powder as catalyst layer in proton exchange membrane fuel cells (PEMFCs)", J. Energy Chem., 22(3), 477-483. https://doi.org/10.1016/S2095-4956(13)60062-5
  86. Tajabadi, M.T., Sookhakian, M., Zalnezhad, E., Yoon, G.H., Hamouda, A.M.S., Azarang, M., Basirun, W.J. and Alias, Y. (2016), "Electrodeposition of flower-like Pt on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection", Appl. Surf. Sci., 386, 418-426. https://doi.org/10.1016/j.apsusc.2016.06.045
  87. Trasatti, S. (1972), "Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions", J. Electr. Chem. Interf. Electrochem., 39(1) 163-184. https://doi.org/10.1016/S0022-0728(72)80485-6
  88. Tsai, Y., Chen, S. and Lee, C. (2008), "Amperometric cholesterol biosensors based on carbon nanotubechitosan-Pt-cholesterol oxidase nanobiocomposite", Sens. Actuat. B, Chem., 135(1), 96-101. https://doi.org/10.1016/j.snb.2008.07.025
  89. Vestberg, R., Westlund, R., Eriksson, A., Lopes, C., Carlsson, M., Eliasson, B., Glimsdal, E., Lindgren, M. and Malmstrom, E. (2006), "Dendron decorated Pt(II) acetylides for optical power limiting", Macromol., 39, 2238-2246. https://doi.org/10.1021/ma0523670
  90. Wang, L.Q., Bellini, M., Filippi, J., Folliero, M., Lavacchi, A., Innocenti, M., Marchionni, A., Miller, H.A. and Vizza, F. (2016), "Energy efficiency of Pt-free alkaline direct formate fuel cells", Appl. Energy, 175, 479-487. https://doi.org/10.1016/j.apenergy.2016.02.129
  91. Wang, M.Y., Chen, J.H., Fan, Z., Tang, H., Deng, G.H. and He, D.L. (2004), "Ethanol electro-oxidation with Pt and Pt-Ru catalysts supported on carbon nanotubes", Carbon, 42, 3257-3260. https://doi.org/10.1016/j.carbon.2004.07.018
  92. Yeh, M., Chang, S., Lin, L., Chou, H., Vittal, R., Hwang, B. and Ho, K. (2015), "Size effects of Pt NP on the electrocatalytic ability of the counter electrode in dye-sensitized solar cells", Nano Energy, 17, 241-253. https://doi.org/10.1016/j.nanoen.2015.08.008
  93. Yonezawa, T. and Toshima, N. (1993), "Polymer- and micelle-protected gold/Pt bimetallic systems. Preparation, application to catalysis for visible-light-induced hydrogen evolution, and analysis of formation process with optical methods", J. Molecul. Catalys., 83(1-2), 167-181. https://doi.org/10.1016/0304-5102(93)87017-3
  94. Yu, C., Bai, Y., He, H., Fan, W., Zhu, L. and Zhou, W. (2015), "Characterization and photocatalytic performance of rod-shaped $Pt/PbWO_4$ composite microcrystals", Chin. J. Catalys., 36(12), 2178-2185. https://doi.org/10.1016/S1872-2067(15)61009-9
  95. Yung, T., Liu, T., Huang, L.Y., Wang, K.S., Tzou, H.M., Chen, P.T., Chao C.Y. and Liu, L.K. (2015), "Characterization of Au and bimetallic PtAu NP on PDDA-graphene sheets as electrocatalysts for formic acid oxidation", Nanos. Res. Lett., 10, 365. https://doi.org/10.1186/s11671-015-1071-4
  96. Zeki, B.S., Gulce, S. and Yildiz, S. (2011), "Amperometric xanthine biosensors based on electrodeposition of Pt on polyvinylferrocenium coated Pt electrode", J. Molecul. Catalys. B, Enzymat., 72(3-4), 282-288. https://doi.org/10.1016/j.molcatb.2011.06.017
  97. Zhan, H., Wong, W., Ng, A., Djurisic, A.B. and Chan, W. (2011), "Synthesis, characterization and photovoltaic properties of Pt-containing poly(aryleneethynylene) polymers with phenanthrenyl-imidazole moiety", J. Organometal. Chem., 696(25), 4112-4120. https://doi.org/10.1016/j.jorganchem.2011.07.005
  98. Zhang, S., Shao, Y., Liao, H., Liu, J., Aksay, I.A., Yin, G. and Lin, Y. (2011), "Graphene decorated with PtAu alloy NP, facile synthesis and promising application for Formic acid oxidation", Chem. Mater., 23, 1079-1081. https://doi.org/10.1021/cm101568z
  99. Zhang, F., Wang, Z., Zhang, Y., Zheng, Z., Wang, C., Du, Y. and Ye, W. (2012), "Microwave assisted synthesis of Pt/graphene nanocomposites", J. Electrochem. Sci., 7, 1968-1977.
  100. Zhang, N., Zhang, S., Du, C., Wang, Z., Shao, Y., Kong, F., Lin, Y. and Yin, G. (2014), "Pt/tin oxide/carbon nanocomposites as promising oxygen reduction electrocatalyst with improved stability and activity", Electroim. Acta, 117, 413-419. https://doi.org/10.1016/j.electacta.2013.11.139
  101. Zheng, Y., Dou, Z., Fang, Y., Li, M., Wu, X., Zeng, J., Hou, Z. and Liao, S. (2016), "Pt NP on carbonnanotube support prepared by room-temperature reduction with $H_2$ in ethylene glycol/water mixed solvent as catalysts for polymer electrolyte membrane fuel cells", J. Pow. Sour., 306, 448-453. https://doi.org/10.1016/j.jpowsour.2015.12.077
  102. Zhou, Y., Itoh, H., Umemura, T., Naka, K. and Chujo, Y. (2002), "Synthesis of novel stable nanometersized metal (M Pd, Au, Pt) colloids protected by a ${\pi}$-conjugated polymer", Langmuir, 18, 277-283. https://doi.org/10.1021/la011323r
  103. Zhou, Q., Zhong, K., Fu, W., Huang, Q., Wang, Z. and Bei, N. (2015), "Nanostructured Pt catalyst coating on diesel particulate filter with a low-cost electroless deposition approach", Chem. Eng. J., 270, 320-326. https://doi.org/10.1016/j.cej.2015.01.131
  104. Zhou, Z.H., Wang, S., Zhou, W.J., Wang, G.X., Jiang, L.H., Li, W.Z., Song, S.Q., Liu, J.G., Sun, G.Q. and Xin, Q. (2003), "Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell", Chem. Commun., 3, 394-395.
  105. Zhu, X. and Ding, A. (2013), "One step construction of sensor based on nanocomposite of Pt and chitosan formed by electrodeposition and its application for determination of nitrite", J. Electrochem. Sci., 8, 135-148.
  106. Zidki, T., Bar-Ziv, R., Green, U., Cohen, H., Meisel, D. and Meyerstein, D. (2014), "The effect of nanosilica support on the catalytic reduction of water by gold, silver and Pt NP-nanocomposite reactivity", Phys. Chem. Chem. Phys., 16, 15422-15429. https://doi.org/10.1039/C4CP00941J