표면 폭발하중 파라메타의 수정 산정식

A Modified Equation of Parameter of Surface Blast Load

전	두 진*
Jeon.	Doo-Jin

김 기 태** Kim, Ki-Tae 한 상 을*** Han, Sang-Eul

Abstract

The Kingery-Bulmash equation is the most common equation to calculate blast load. However, the Kingery-Bulmash equation is complicated. In this paper, a modified equation for surface blast load is proposed. The equation is based on Kingery-Bulmash equation. The proposed equation requires a brief calculation process, and the number of coefficients is reduced under 5. As a result, each parameter obtained by using the modified equation has less than 1% of error range comparing with the result by using Kingery-Bulmash equation. The modified equation may replace the original equation with brief process to calculate.

Keywords : Surface blast, Blast load, Kingery-Bulmash equation, Blast wave parameter

1. 서론

최근 국내외에서 충격, 폭발 등과 같은 비정상하중 에 대한 연구^{1.3)}가 활발히 진행되고 있다. 또한, 이러 한 사고에 대비하고자 규모가 크고 많은 인원이 사용 하는 시설 또는 사회적, 경제적으로 중요한 시설 등 에서 이를 설계에 반영하는 추세이다. 더욱이 최근 전 세계적으로 발생한 테러와 그 위협으로 인해 방폭 설계의 필요성이 증대되었다.

폭발 하중을 산정하기 위한 방법으로는 폭발 하 중식을 이용한 방법과 수치 해석을 이용한 방법이 있다. 전자는 다양한 폭발 실험의 데이터를 기반으 로 세워진 식을 계산함으로써 폭발 하중을 산정하 는 방법이다⁴⁾. 이 방법은 하중을 쉽고 빠르게 계산 할 수 있다는 장점이 있으나, 폭발파가 대상을 직접 가격하는 경우에만 적용이 가능하다. 그리고 후자는

* 학생회원, 인하대학교 대학원 박사과정 Inha University 전산유체역학을 이용하여 폭발에 의한 유체의 거동 을 해석하고, 그로부터 발생하는 압력을 산정하는 방법이다⁵⁾. 이 방법은 수치 해석 모델에 따라 다양 한 경우에 적용이 가능하지만, 하중 산정에 많은 시 간이 소요된다. 이 중 가장 일반적으로 사용되는 것 은 폭발 하중식을 이용한 방법이다.

과거에 폭발 하중을 산정하기 위한 많은 연구가 수행되었고 다양한 형태의 방정식이 제시되었다⁶⁻⁹. 이러한 방정식들은 실험 데이터를 기반으로 세워진 경험식이며, 그 중에서 가장 보편적으로 사용되는 것은 Kingery-Bulmash 방정식이다. 본 연구에서는 이 방정식을 바탕으로 기존의 식을 개선하여 수정 된 산정식을 제시하고자 한다.

폭발의 유형은 폭발이 발생하는 위치에 따라 자 유 공중 폭발, 공중 폭발 그리고 표면 폭발로 분류 할 수 있다. 자유 공중 폭발은 <Fig. 1>과 같이 지표 면에서 멀리 떨어진 공중에서 폭발이 발생하는 것 을 말한다. 자유 공중 폭발이 일어나면, 폭발지점의 중심으로부터 발생한 충격파가 구형으로 전파되고, 이 충격파는 도중에 증폭 없이 직접 구조물을 가격 한다.

^{**} 학생회원, 인하대학교 대학원 석사과정 Inha University

^{***} 교신저자, 정회원, 인하대학교 건축공학과 교수, 공학박사 Dept. of Architectural Engineering, Inha University Tel: 070-8269-3656 Fax: 032-866-4624 E-mail: hsang@inha.ac.kr

공중 폭발 또한 공중에서 발생하는 폭발이지만, 자유 공중 폭발과는 다르게 지표면과 가까운 공중 에서 폭발하는 것을 말한다<Fig. 2>. 공중 폭발은 폭발지점으로부터 발생한 초기의 충격파가 대상에 도달하기 전에 지표면에서 반사되어 충격파의 증폭 이 일어난다.

표면 폭발은 <Fig. 3>과 같이 지표면에서 발생하 는 폭발을 말한다. 표면에서 폭발이 일어나면, 충격 파는 폭발지점부터 지표면 반사로 인해 증폭이 발 생하여 진행된다. 이 때문에 표면 폭발은 일반적으 로 같은 조건의 자유 공중 폭발에 비해 하중이 크게 발생한다.

이러한 폭발의 유형 중에서, 본 연구의 선행 논문 에서는 자유 공중 폭발을 다루었으며, 본 논문에서 는 표면 폭발을 다루고자 한다.

2. 기존의 폭발하중 산정식

2.1 폭발하중의 특성

폭발이 발생하였을 때, 생성된 충격파는 구조물에 공기의 압력으로 작용하며, 이러한 하중을 <Fig. 4> 와 같이 압력-시간 이력 곡선으로 나타낼 수 있다.

 \langle Fig. 4 \rangle Pressure-time curve of blast load¹⁰⁾

충격파가 대상에 도달하면, 순간적으로 최대 압력 이 발생하였다가 빠르게 감소한다. 이러한 구간을 정압기라고 한다. 정압기 이후에는 대기압보다 낮은 부압력이 발생하며 서서히 대기압에 수렴하게 된다. 이러한 구간을 부압기라고 한다. 그러나 부압기의 경우 구조물에 미치는 영향이 매우 미미하므로 일 반적으로 폭발 해석에서는 정압기만을 고려한다.

<Fig. 4>에서 알 수 있듯이, 몇 가지의 파라메타 들로부터 폭발하중의 압력-시간 이력 곡선을 나타 낼 수 있는데, 이 때 사용되는 파라메타들은 다음과 같다.

 P_{so}: 입사압의 최대값

 P_r: 반사압의 최대값

 I_{so}: 입사압에 의한 충격량

 I_r: 반사압에 의한 충격량

 T_a: 충격파의 도달 시간

 T_o: 정압기의 지속 시간

 U: 충격파 도달 시 충격파의 속도

미 국방성에서 발간하는 UFC 3-340-02¹⁰⁾에서는 이러한 파라메타들을 환산거리에 따라 <Fig. 5>와 같은 도표로 나타내고 있다.

for surface burst¹⁰⁾

2.2 기존의 폭발하중 산정식

과거에 폭발 하중식을 정립하기 위한 많은 연구 가 수행되었으며, 이론적으로 접근하기 어려운 폭발 하중의 특성상 실험 데이터를 기반으로 한 경험식 으로 제시되었다. 그 중에서 Kingery-Bulmash 방정 식은 미 국방성에서 발간된 UFC 3-340-02와 미 공 병단에서 개발된 폭발 하중 산정 프로그램인 Conwep에 적용되어, 가장 보편적으로 사용되는 방 정식이다. 그러나 Kingery-Bulmash 방정식은 계산 과정이 다소 복잡하여 하중을 직접 계산하기에는 어려움이 있다. 이에 Swisdak¹¹⁾은 단순화된 Kingery-Bulmash 방정식을 제시하였다.

대부분의 방정식에서 공통적으로 환산거리를 변 수로 사용하며, 환산거리는 식 (1)과 같이 계산된다.

$$Z = R/W^{1/3}$$
(1)

Z: 환산거리(Scaled distance)R: 폭발지점까지의 거리W: 폭약의 TNT 환산량

또한, 위의 환산거리를 통해 폭발 하중의 파라메 타를 계산하는 Kingery-Bulmash의 방정식은 다음 식 (2a), (2b)와 같다.

$$U = K_1 + K_2 \times \log Z \tag{2a}$$

$$Y = 10^{(C_1 + C_2 \times U + C_3 \times U^2 + \dots + C_N \times U^{N-1})}$$
(2b)

$$Y$$
: 폭발하중의 파라메타 $(P_{so}, P_r, \frac{I_{so}}{W^{1/3}}, \frac{I_r}{W^{1/3}}, \frac{T_a}{W^{1/3}}, U)$

Kingery-Bulmash 방정식은 표면 폭발의 파라메 타를 환산거리 범위 0.06~40m/kg^{1/3}(0.167~100 ft/lb^{1/3})에서 계산할 수 있다. K와 C는 각각의 파 라메타를 구하기 위한 계수이며, 환산거리의 범위, 계산하기 위한 파라메타에 따라 계수의 수와 값이 달라진다. 상수 K는 2개, 상수 C는 4~15개로 이루 어져 있다. 한 가지 예로써, 표면 폭발에서 입사압 의 최대값은 다음 <Fig. 6>과 같이 계산된다.

$\mathbf{U} = -0.214362789151 + 1.35034249993\mathbf{T}$					
Then substitute U into					
Y = 2.780776916577 - 1.6958988741U +					
$0.154159376846 {\rm U}_2+0.514060730593 {\rm U}_3-$					
$0.0988534365274U_4 - 0.293912623038U_5 -$					
$\boldsymbol{0.0268112345019U_6+0.109097496421U_7+}$					
$0.00162846756311 U_8$					
$\mathbf{U} = \mathbf{K_0} + \mathbf{K_1}\mathbf{T}$					
$\mathbf{T} = \mathbf{Common} \ \mathbf{Logarithm} \ \mathbf{of} \ \mathbf{the} \ \mathbf{Distance}(\mathbf{m})$					
Y = Common Logarithm of the Surface Blast					
Parameter (metric)(Pressure or Impulse)					

 \langle Fig. 6 \rangle Example of coefficients for Kingery-Bulmash Equation¹²⁾

또한, Swisdak은 이를 비교적 간단히 계산하기 위해 단순화된 Kingery-Bulmash 방정식을 제시하 였으며, 식 (3)과 같이 계산된다.

$$Y = e^{(A + B \times \ln Z + C \times (\ln Z)^2 + \dots + G \times (\ln Z)^6)}$$
(3)

이 방정식은 Kingery-Bulmash 방정식을 바탕으 로 세워졌으며, 상수의 수는 2~7개로 이루어져 있 다. 또한, 기존 방정식과의 오차율은 1% 이내로 상 당히 정확하다. 그러나 표면 폭발에만 적용이 가능 하며, 계산 가능한 환산거리 범위가 기존 방정식의 범위(작은 환산거리)를 포괄하지 못하는 한계점을 가지고 있다. 한 가지 예로써, 표면 폭발에서 입사 압의 최대값을 계산하기 위한 상수는 <Table 1>과 같다.

3. 수정된 폭발하중 산정식

3.1 수정 산정식의 조건

앞서 언급한 바와 같이, Kingery-Bulmash 방정식 은 자유 공중 폭발과 표면 폭발에 모두 적용할 수 있으며, 폭발하중의 압력-시간 이력 곡선을 나타내 기 위한 모든 파라메타들을 계산할 수 있다는 장점 을 가지고 있다. $\langle \text{Table 1} \rangle$ Coefficients of P_s (Swisdak Eq.)¹¹⁾

$0.2 < Z < 2.9 \ (m/kg^{1/3})$									
A	7.2106	B	-2.1069	C	-0.3229				
D	0.1117	E	0.0685	F	0				
G	0								
$2.9 < Z < 23.8 \ (m/kg^{1/3})$									
A	7.5938	B	-3.0523	C	-0.40977				
D	0.0261	E	-0.01267	F	0				
G	0								
	23.8	< Z <	198.5 (m)	$(kg^{1/3})$					
A	6.0536	B	-1.4066	C	0				
D	0	E	0	F	0				
G	0								

또한, 미 국방성에서 발간된 매뉴얼인 UFC 3-340-02와 미 공병단에서 개발된 폭발 하중 산정 프로그램인 Conwep에 적용되어, 가장 보편적으로 사용되는 방정식이다. 그러나 계산 과정이 3단계로 다소 길며, 계산에 사용되는 상수의 수가 상당히 많 고 복잡하다는 단점이 있다. 따라서 본 연구에서는 Kingery-Bulmash 방정식을 기반으로 보다 간편하 게 수정된 폭발하중 산정식을 제안하고자 한다. 자 유 공중 폭발의 하중식은 본 연구의 선행 논문에서 다루었으며, 본 논문에서는 표면 폭발의 하중식을 다루고자 한다.

본 연구에서 설정된 수정 산정식의 조건은 다음 과 같다.

- (1) 수정 산정식은 Kingery-Bulmash 방정식을 기 반으로 한다.
- (2) 기존 방정식에서 제시하는 모든 환산거리 범
 위(0.06~40m/kg^{1/3})를 만족하도록 한다.
- (3) 기존 방정식의 계산 과정에서 변수 U의 계산 을 생략한다.
- (4) 기본 함수의 형태는 지수함수로 하며, 지수는 환산거리의 상용로그(log Z)를 변수로 하는 다항식으로 한다.
- (5) 방정식의 상수의 수는 5개 이하로 하며, 5개

의 유효숫자를 갖도록 한다.

(6) 전 환산거리 범위에 대하여 기존 방정식과의 오차는 1% 이하가 되도록 한다.

위와 같은 조건에 따라 결정된 수정 산정식의 기 본 함수 형태는 식 (4)와 같다. 식 (4)에서는 기존 식 의 변수 *U*를 계산하는 과정을 생략하도록 하였으 며, 지수는 4차 다항함수로 계산된다.

$$Y = 10^{(C_1 + C_2 \times (\log Z) + C_3 \times (\log Z)^2 + C_4 \times (\log Z)^3 + C_5 \times (\log z)^4)}$$
(4)

3.2 수정 산정식의 계수

수정 산정식의 상수 C를 결정하기 위해 기존 방 정식의 값으로부터 Curve fitting을 사용하였다. Curve fitting의 알고리즘은 비교적 안정적이고 빠 르게 해에 수렴할 수 있는 Levenberg-Marquardt 방법을 사용하였다. Levenberg-Marquardt 방법은 비선형 최소 자승 문제를 푸는 대표적인 방법으로, Gauss-Newton 방법과 Gradient descent 방법이 결 합된 형태이다.

이를 통해 표면 폭발하중의 입사압의 최대값 (*P*_{so})에 대한 계수는 <Table 2>와 같다.

 $\langle \text{Table 2} \rangle$ Coefficients of P_{so} (*MPa*)

$0.06 < Z < 1.13 \ (m/kg^{1/3})$								
C_1	0.13295	C_2	-2.1712	C_3	-1.3878			
C_4	-1.0401	C_5	-0.37148					
$1.13 < Z < 10.00 \ (m/kg^{1/3})$								
C_1	0.13067	C_2	-2.0672	C_3	-1.1750			
C_4	2.1159	C_5	-0.83460					
$10.00 < Z < 40.00 \ (m/kg^{1/3})$								
C_1	0.78363	C_2	-4.5738	C_3	2.6834			
C_4	-0.72311	C_5	-					

이와 마찬가지로 반사압의 최대값(*P_r*)에 대한 계 수는 <Table 3>과 같다. $\langle \text{Table 3} \rangle$ Coefficients of P_r (*MPa*)

$0.06 < Z < 0.42 \ (m/kg^{1/3})$								
C_1	1.3953	C_2	0.30058	C_3	4.8121			
C_4	4.7833	C_5	1.5439					
$0.42 < Z < 3.45 \ (m/kg^{1/3})$								
C_1	0.90962	C_2	-2.6898	C_3	-1.2237			
C_4	0.85625	C_5	1.4957					
	3.45	< Z <	40.00 (m)	$(kg^{1/3})$				
C_1	1.2511	C_2	-4.7950	C_3	2.7741			
C_4	-0.73282	C_5	-					

입사압과 반사압에 의한 충격량은 각각을 폭약의 TNT 등가량의 세제곱근으로 나눈 값($I_{so}/W^{1/3}$, $I_r/W^{1/3}$)으로 계산되며, 이에 대한 계수는 각각 <Table 4>, <Table 5>와 같다.

 $\langle \text{Table 4} \rangle$ Coefficients of $I_{so}/W^{1/3}$ (*MPa* \cdot $ms/kg^{1/3}$)

$0.06 < Z < 0.95 \ (m/kg^{1/3})$							
C_1	-0.60247	C_2	1.1143	C_3	1.3760		
C_4	-1.5534	C_5	-1.0651				
	0.95	< Z <	5.97~(m/	$kg^{1/3}$)			
C_1	-0.63226	C_2	-0.41419	C_3	-2.2475		
C_4	3.8761	C_5	-2.2190				
	$5.97 \cdot$	< Z <	40.00 (m)	$(kg^{1/3})$			
C_1	-0.60392	C_2	-0.84947	C_3	-0.055334		
C_4	-	C_5	-				

 $\langle \text{Table 5} \rangle$ Coefficients of $I_r/W^{1/3}$ (*MPa* · $ms/kg^{1/3}$)

$0.06 < Z < 40.00 \ (m/kg^{1/3})$								
C_1	-0.053169	C_2	-1.3466	C_3	0.23258			
C_4	-0.059534	C_5	-					

이와 마찬가지로, 압력의 도달 시간과 지속 시간 도 각각을 폭약의 TNT 등가량의 세제곱근으로 나 눈 값 $(T_a/W^{1/3}, T_o/W^{1/3})$ 으로 계산되며, 이에 대 한 계수는 각각 <Table 6>, <Table 7>과 같다.

(Table 6) Coefficients of $T_a/W^{1/3}$ $(ms/kg^{1/3})$

$0.06 < Z < 1.46 \ (m/kg^{1/3})$								
C_1	-0.33217	C_2	1.8061	C_3	0.43653			
C_4	0.26277	C_5	0.15906					
$1.46 < Z < 10.00 \ (m/kg^{1/3})$								
C_1	-0.35217	C_2	1.9914	C_3	-0.13049			
C_4	-0.17628	C_5	-					
$10.00 < Z < 40.00 \ (m/kg^{1/3})$								
C_1	-0.074315	C_2	1.5680	C_3	-0.15812			
C_4	-	C_5	-					

(Table 7) Coefficients of $T_o/W^{1/3}$ ($ms/kg^{1/3}$)

$0.17 < Z < 0.69 \ (m/kg^{1/3})$								
C_1	0.43227	C_2	6.1103	C_3	12.418			
C_4	11.021	C_5	3.8670					
$0.69 < Z < 1.00 \ (m/kg^{1/3})$								
C_1	0.24242	C_2	3.6673	C_3	2.6397			
C_4	-	C_5	-					
$1.00 < Z < 2.88 \ (m/kg^{1/3})$								
C_1	0.24255	C_2	2.1849	C_3	-14.917			
C_4	35.106	C_5	-23.852					
	2.88	< Z <	10.00 (m	$/kg^{1/3})$				
C_1	-0.32552	C_2	2.7174	C_3	-2.7949			
C_4	1.0846	C_5	-					
	10.00	< Z <	40.00 (m	$n/kg^{1/3}$)			
C_1	0.27214	C_2	0.48449	C_3	-0.076501			
C_4	-	C_5	-					

마지막으로, 압력이 도달할 때의 압력파의 속도 (U)에 대한 계수는 <Table 8>과 같다. $\langle \text{Table 8} \rangle$ Coefficients of U(m/ms)

$0.06 < Z < 1.28 \ (m/kg^{1/3})$							
C_1	0.079911	C_2	-0.97917	C_3	-0.53612		
C_4	-0.39288	C_5	-0.14662				
$1.28 < Z < 10.00 \ (m/kg^{1/3})$							
C_1	0.089984	C_2	-1.1228	C_3	0.31104		
C_4	0.73402	C_5	-0.45634				
	10.00	< Z <	(m	$/kg^{1/3}$)		
C_1	-0.41168	C_2	-0.034073	C_3	-		
C_4	-	C_5	-				

3.3 기존 방정식과 수정 산정식의 비교

본 논문에서 제안한 수정된 산정식을 기존의 방 정식인 Kingery-Bulmash 방정식과 비교하여 오차 를 파악하고 정확성을 검증하였다. 전 구간에서 균 등하고 충분한 비교 데이터를 확보하기 위해 환산 거리 0.06~40m/kg^{1/3} 구간의 총 500개의 지점에서 비교하였으며, 그 결과를 <Table 9>에 나타내었다. 그 결과, 모든 파라메타의 최대 오차는 1% 이하이 며, 평균 오차는 0.3% 이하로 기존의 방정식과 매우 일치함을 확인하였다.

4. 결론

다양한 폭발하중 산정식 중, Kingery-Bulmash 방 정식은 자유 공중 폭발과 표면 폭발에 모두 적용이 가능하며, 폭발의 압력-시간 이력 곡선을 표현하기 위한 모든 파라메타를 계산할 수 있다. 또한 UFC 3-340-02와 Conwep 모델에 적용되어 전 세계적으 로 가장 널리 사용되는 방정식이다. 그러나 이 방정 식은 계산이 다소 복잡한 문제점을 가지고 있다. 이 에 따라 Swisdak은 Kingery-Bulmash 방정식을 보 다 간단하게 계산하기 위한 방정식을 제시하였다. 그러나 Swisdak의 방정식은 표면 폭발에만 적용이 가능하고, 계산 가능한 환산거리 범위도 기존의 방 정식을 모두 포괄하지 못하였다. 따라서 본 연구에 서는 이러한 문제점을 해결하기 위해 수정된 산정 식을 제안하였다.

Z	P_{so}	P_r	$I_{so}/ W^{1/3}$	$I_{r}/W^{1/3}$	$T_a/W^{1/3}$	$T_o/ W^{1/3}$	U
0.06	-0.93	0.08	-0.01	0.00	0.33	-	-0.05
0.0608	-0.77	-0.03	-0.01	0.00	0.22	-	-0.06
0.0616	-0.63	-0.11	-0.01	0.00	0.12	-	-0.07
:	÷	÷	:	:	:	:	÷
38.9710	-0.40	-0.23	0.37	0.01	0.05	-0.34	-0.47
39.4822	-0.58	-0.38	0.39	0.01	0.05	-0.42	-0.51
40	-0.79	-0.56	0.41	0.01	0.06	-0.50	-0.55
Maximum	0.49	0.97	1.00	0.01	0.87	0.96	0.48
Minimum	-1.00	-0.58	-0.81	0.00	-0.61	-0.95	-0.81
Average	0.17	0.23	0.12	0.00	0.19	0.19	0.20

(Table 9) Comparison modified equation with Kingery-Bulmash equation (Error: %)

선행된 논문에서는 자유 공중 폭발 하중의 수정 산정식을 다루었으며, 본 논문에서는 표면 폭발하중 의 수정 산정식을 다루었다.

본 논문에서 제안한 산정식은 Kingery-Bulmash 방정식과 마찬가지로 2가지 유형의 폭발에 모두 적 용할 수 있다. 또한, 계산 가능한 환산거리 범위도 동일하다. 수정된 산정식에서는 기존 방정식에서의 불필요한 계산을 생략함으로써 계산 과정을 줄였으 며, 계산에 필요한 계수의 수를 5개 이하로 줄여 방 정식을 더욱 간단하게 하였다. 계산의 결과는 기존 의 방정식과 비교하여 1% 이하의 오차를 갖는다.

그러나, 수정된 산정식은 다음과 같은 2가지 한계 점을 가지고 있다. 첫째, 방정식을 정립함에 있어 충분한 이론적인 배경이 바탕이 되지 않는다는 것 이다. 이 문제는 제안된 수정 산정식 뿐만 아니라 실험 데이터에 의해 경험식으로 세워진 다른 방정 식들도 함께 갖는 문제이다. 둘째, 방정식이 세워지 는데 사용된 데이터가 실험 데이터가 아닌 Kingery-Bulmash 방정식의 계산값이라는 점이다. 실제 사용된 실험 데이터를 기반으로 하는 것이 가 장 좋은 방법이지만, 충분한 실험 데이터를 얻는 것 이 불가능하다. 그러나 본 논문의 목적은 새로운 방정식을 만드 는 것이 아닌, Kingery-Bulmash 방정식과 같은 결 과를 얻으면서, 보다 간단하게 계산하기 위한 방정 식을 찾는 것이기 때문에 Kingery-Bulmash 방정식 의 계산값을 이용한 것은 합당하다고 판단된다.

따라서 본 논문에서 제안한 수정 산정식은 이러 한 한계점을 이해하고 상황에 맞게 사용한다면, 더 욱 간단한 계산으로 동일한 결과를 얻을 수 있다는 점에서 Kingery-Bulmash 방정식을 보완하고 대체 할 수 있을 것이라고 판단된다.

감사의 글

본 연구는 국토교통부 도시건축연구사업의 연구비 지원(17AUDP-B100343-03)에 의해 수행되었습니다.

References

 H.S. Kim, H.S. Ahn, J.G. Ahn, "Erosion Criteria for the Blast Analysis of Reinforcement Concrete Members", Journal of the Architectural Institute of Korea Structure & Construction, 30(3), pp.21-28, 2014

- K.S. Lee, Z. Huque, D.J. Jeon, S.E. Han, "The Development of Impact Force Model of Large Commercial Aircraft Considering the Fuel Mass Effect", Journal of the Architectural Institute of Korea Structure & Construction, 30(8), pp.19-28, 2014
- S. Astarlioglu, T. Krauthammer, D. Morency, T.P. Tran, "Behavior of Reinforced Concrete Columns Under Combined Effects of Axial and Blast-induced Transverse Loads", Engineering Structures, 55, pp.26-34, 2013
- U. Nystrom, K. Gylltoft, "Numerical Studies of the Combined Effects of Blast and Fragment Loading", International Journal of Impact Engineering, 36, pp.995-1005, 2009
- M. Carriere, P.J. Hefferman, R.C. Wight, A. Braimah, "Behaviour of Steel Reinforced Polymer (SRP) Strengthened RC Members under Blast Load", Canadian Journal of Civil Engineering, 36, pp.1356-1365, 2009
- H.L. Brode, "Numericla Solution of Spherical Blast Waves", Journal of Applied Physics, American Institute of Physics, New York, 1955
- 7. G.F. Kinney, K.J. Graham, "Explosive Shocks in Air", Springer, Berlin, 1985
- C.A. Mills, "The Design of Concrete Structures to Resist Explosions and Weapon Effects", Proceedings of the 1st Int. Conference on Concrete for Hazard Protections, Edinburgh, UK, 1987
- C.N. Kingery, G. Bulmash, "Technical Report ARBRL-TR-02555: Air Blast Parameters from TNT Spherical Air Burst and Hemispherical Burst", AD-B082 713, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 1984
- Unified Facilities Criteria, "Structures to Resist the Effects of Accidental Explosions", UFC 3-340-02, U.S. Department of Defense,

Washington D.C., 2014

- M.M. Swisdak. "Simplified Kingery airblast calculations", Proceedings of the 26th DoD Explosives Safety Seminar, Indian Head, MD: Naval Surface Warfare Center, 1994.
- United Nations Office of Disarmament Affairs (UNODA), "International Ammunition Technical Guideline: Formulae for Ammunition management", UN IATG 01. 80:2015 [E], UN Safer Guard, 2015
- Received : July 31, 2017
- Revised : August 28, 2017
- Accepted : August 31, 2017