DOI QR코드

DOI QR Code

Design of Signal Processing Circuit for Semi-implantable Middle Ear Hearing Device with Bellows Transducer

벨로즈형 진동체를 갖는 반이식형 인공중이용 신호처리회로 설계

  • 김종훈 (경북대학교 의용생체공학과) ;
  • 신동호 (경북대학교 의공학연구소) ;
  • 성기웅 (경북대학교병원 의공학과) ;
  • 조진호 (경북대학교 IT대학 전자공학부)
  • Received : 2017.02.07
  • Accepted : 2017.02.26
  • Published : 2017.02.28

Abstract

In this paper, a signal processing circuit for semi-implantable middle ear hearing device is designed using the TCBT which is recently proposed for a new middle ear transducer that can be implanted at round window of cochlea. The designed semi-implantable hearing device transmits digital sound signal from external device located at behind the ear to the internal device implanted under the skin using inductive coupling link methods with high efficiency. The coils and signal processing circuits are designed and implemented considering the total transmission and reception distance including skin thickness of temporal bone for the semi-implantable hearing device. And also, to improve the data transmission efficiency, the output circuits which can supply sufficient signal power is designed. In order to confirm operation of semi-implantable hearing device using inductive coupling link, the circuit analysis was performed using PSpice, and the performance was verified by implementing a signal processing board of an available size.

본 논문에서는 달팽이관의 정원창 이식용으로 최근 새롭게 제안된 3코일 벨로우즈형 진동체(tri-coil bellows transducer, TCBT)를 이용하는 반이식형 인공중이(semi-implantable middle ear hearing device)를 위한 신호처리회로를 설계하였다. 설계된 반이식형 인공중이는 높은 효율을 가지는 유도결합 방법을 이용하여 귀 뒤편에 착용되는 체외기와 대응되는 피부 내측에 위치하는 체내기 간에 데이터를 전송한다. 귀 뒤 부위의 피부두께를 포함하는 반이식형 인공중이의 송수신 거리를 고려하여 송수신 코일과 신호처리 회로를 설계 및 구현하였다. 또한 데이터 전송 효율을 높이기 위하여, 전력을 충분히 증폭하기 위한 체외기의 출력부도 설계 하였다. 유도결합 방식을 이용한 반이식형 인공중이의 동작을 확인하기 위하여, PSpice를 이용하여 회로해석을 수행하였으며, 활용 가능한 크기의 신호처리 보드를 제작하여 그 성능을 검증하였다.

Keywords

References

  1. H. H. Kim and D. M. Barrs, "Hearing aids: a review of what's new," Otolaryngology-Head and Neck Surgery, vol. 134, no. 6, pp. 1043-1050, 2006. https://doi.org/10.1016/j.otohns.2006.03.010
  2. J. M. Kates, Digital Hearing Aids, Plural Publishing Incorporation, San Diego, USA, 2008.
  3. H. A. Jenkins, J. K. Niparko, W. H. Slattery, J. G. Neely and J. M. Fredrickson, "Otologics middle ear transducer ossicular stimulator: performance results with varying degrees of sensorineural hearing loss," Acta Oto-laryngologica, vol. 124, no. 4, pp. 391-394, 2004. https://doi.org/10.1080/00016480410016298
  4. D. S. Haynes, J. A. Young, G. B. Wanna and M. E. Glasscock, "Middle ear of implantable hearing devices: An overview," Trends in Amplification, vol. 13, no. 3, pp. 206-214, 2009. https://doi.org/10.1177/1084713809346262
  5. J. H. Cho, I. Y. Park and S. H. Lee, "Development of fully implantable middle ear hearing devices with differential floating mass transducer: current status," Journal of Biomedical Engineering Research, vol. 26, no. 5, pp. 309-317, 2005.
  6. U. Fisch, C. W. Cremers, T. Lenarz, B. Weber, G. Babighian, A. S. Uziel, D. W. Proops, A. F. O'Connor, R. Charachon, J. Helms and B. Fraysse, "Clinical experience with the Vibrant Soundbridge implant device," Otology and Neurotology, vol. 22, no. 6, pp. 962-972, 2001. https://doi.org/10.1097/00129492-200111000-00042
  7. H. Silverstein, J. Atkins, J. H. Jr. Thompson and N. H. Gilman, "Experience with the SOUNDTEC implantable hearing aid," Otology and Neurotology, vol. 26, no. 2, pp. 211-217, 2005. https://doi.org/10.1097/00129492-200503000-00014
  8. H. A. Jenkins, J. S. Atkins, D. Horlbeck, M. E. Hoffer, B. Balough, J. V. Arigo, G. Alexiades and W. Garvis, "U.S. Phase I preliminary results of use of the Otologics MET fully implantable ossicular stimulator," Otolaryngology-Head and Neck Surgery, vol. 137, no. 2, pp. 206-212, 2007. https://doi.org/10.1016/j.otohns.2007.03.012
  9. Envoy Medical Corporation, Esteem(R) Totally Implantable Middle Ear Hearing System (PMA P090018), 2009.
  10. J. Kiefer, W. Arnold and R. Staudenmaier, "Round window stimulation with an implantable hearing aid (Soundbridge(R)) combined with autogenous reconstruction of the auricle - A new approach," Journal of Oto-Rhino-Laryngology, Head and Neck Surgery, vol. 68, no. 6, pp. 378-385, 2006.
  11. H. H. Nakajima, W. Dong, E. S. Olson, J. J. Rosowski, M. E. Ravicz and S. N. Merchant, "Evaluation of round window stimulation using the floating mass transducer by intracochlear sound pressure measurements in human temporal bones," Otology and Neurotology, vol. 31 no. 3 pp. 506-511, 2010. https://doi.org/10.1097/MAO.0b013e3181c0ea9f
  12. D. H. Shin, Tri - Coil Bellows Transducer for Round Window Driving Implantable Middle - Ear Hearing Aids, Ph.D. Thesis, Kyungpook National University, 2016.
  13. D. H. Shin, K. W. Seong, S. Puria, K. Y. Lee and J. H. Cho, "A tri-coil bellows-type round window transducer with improved frequency characteristics for middle-ear implants," Hearing Research, vol. 341, pp. 144-154, 2016. https://doi.org/10.1016/j.heares.2016.08.013
  14. D. S. Haynes, J. A. Young, G. B. Wanna and M. E. Glasscock III, "Middle ear implantable hearing devices: an overview," Trends in amplification, vol. 13, no. 3, pp. 206-214, 2009. https://doi.org/10.1177/1084713809346262
  15. B. S. Song and J. H. Cho, "Analysis of Signal Transfer Characteristics of Implantable Middle Ear System using Acoustic Model," Journal of Biomedical Engineering Research, vol. 23, issue. 3, pp. 227-233, 2002.
  16. J. G. Jo, J. H. Noh, T. S. Jeong and C. S Yoo, "A Digital Input Class-D Audio Amplifier," Journal of the Institute of Electronics Engineers of Korea SD, vol. 47, no. 11, pp. 6-12, 2010.
  17. Klaus Finkenzeller, RFID Handbook; Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication, Hoboken, pp. 61-66, 2010.
  18. MED-EL Co. Wabpage, http://s3.medel.com/pdf/VSB_relaunch/28477_10_FactsheetVSBSystem_en_.pdf (accessed Feb. 06, 2016)
  19. ANSI, ANSI. S3.22-2003, Specification of hearing aid characteristics, New York: American National Standards Institute, 2003.