DOI QR코드

DOI QR Code

THE AP-HENSTOCK INTEGRAL OF VECTOR-VALUED FUNCTIONS

  • Yoon, Ju Han (Department of Mathematics Education Chungbuk National University)
  • 투고 : 2017.01.18
  • 심사 : 2017.01.20
  • 발행 : 2017.02.15

초록

In this paper we introduce AP-Henstock integral of vector valued functions which is a generalization of Henstock integral of vector valued functions, investigate some of its properties, and characterize AP-Henstock integral of vector valued functions by the notion of equiintegrability.

키워드

과제정보

연구 과제 주관 기관 : Chungbuk National University

참고문헌

  1. S. Cao, The Henstock integral for Banach-valued functions, SEA Bull. Math. 16 (1992), 35-40.
  2. D. H. Fremlin and J. Mendoza, On the integration of vector-valued functions, Illnois J. Math. 38 (1994), 127-147.
  3. J. L. Gamez and J. Mendoza, On Denjoy-Dunford and Denjoy-Pettis integral, Studia Math. 130 (1998), 115-133.
  4. R. A. Gordon, The Denjoy extension of the Bochner, Pettis, and Dunford integrals, Studia Math. 92 (1989), 73-91. https://doi.org/10.4064/sm-92-1-73-91
  5. R. A. Gordon, The McShane integral of Banach-valued functions, Illnois J. Math. 34 (1990), 556-567.
  6. R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Amer. Math. Soc. 1994.
  7. J. M. Park, The Denjoy extension of the Riemann and McShane integrals, Czechslovak Math. J. 50 (2000), 615-625. https://doi.org/10.1023/A:1022845929564
  8. J. M. Park, D. H. Lee and J. H. Yoon, The integrals of Banach space-valued functions, J. Chungcheong Math. Soc. 20 (2008), 79-89.
  9. L. D. Piazza, Kurzweil-Henstock type Integration on Banach Spaces, Real Analysis Exchange 29 (2003-2004), no. 2, 543-556. https://doi.org/10.14321/realanalexch.29.2.0543
  10. J. H. Yoon, J. M. Park, Y. K. Kim and B. M. Kim, The AP-Henstock extension of the Dunford and Pettis integrals, J. Chungcheong Math. Soc. 23 (2010), 879-884.